Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T08:24:59.280Z Has data issue: false hasContentIssue false

Improved Signal-to-Noise Ratio in Laboratory-Based Phase Contrast Tomography

Published online by Cambridge University Press:  30 January 2012

Matthieu N. Boone*
Affiliation:
Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium
Yoni De Witte
Affiliation:
Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium
Manuel Dierick
Affiliation:
Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium
Ana Almeida
Affiliation:
Department of Pharmaceutics, Ghent University, Harelbekestraat 72, B-9000 Gent, Belgium
Luc Van Hoorebeke
Affiliation:
Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

In conventional X-ray microtomography (μCT), the three-dimensional (3D) distribution of the attenuation coefficient of X-rays is measured and reconstructed in a 3D volume. As spatial resolution increases, the refraction of X-rays becomes a significant phenomenon in the imaging process. Although this so-called phase contrast was initially a cumbersome feature in lab-based μCT, special phase retrieval algorithms were developed to exploit these effects. Clear advantages in terms of visualization and analysis can be seen when phase retrieval algorithms are applied, including an increased signal-to-noise ratio. In this work, this is demonstrated both on simulated and measured data.

Type
Techniques and Software Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almeida, A., Possemiers, S., Boone, M.N., De Beer, T., Quinten, T., Van Hoorebeke, L., Remon, J.-P. & Vervaet, C. (2011). Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur J Pharm Biopharm 77(2), 297305.CrossRefGoogle ScholarPubMed
Boone, M., DeWitte, Y., Dierick, M., Van den Bulcke, J., Vlassenbroeck, J. & Van Hoorebeke, L. (2009). Practical use of the modified Bronnikov algorithm in micro-CT. Nucl Instrum Meth B 267(7), 11821186.CrossRefGoogle Scholar
Brabant, L., Vlassenbroeck, J., De Witte, Y., Cnudde, V., Boone, M.N., Dewanckele, J. & Van Hoorebeke, L. (2011). Three-dimensional analysis of high-resolution X-ray computed tomography data with Morpho+. Microsc Microanal 17(2), 252263.CrossRefGoogle ScholarPubMed
Breitenbach, J. (2002). Melt extrusion: From process to drug delivery technology. Eur J Pharm Biopharm 54, 107117.CrossRefGoogle ScholarPubMed
Bronnikov, A.V. (1999). Reconstruction formulas in phase-contrast tomography. Opt Comm 171, 239244.CrossRefGoogle Scholar
Bronnikov, A.V. (2002). Theory of quantitative phase-contrast computed tomography. J Opt Soc Am A 19(3), 472480.CrossRefGoogle ScholarPubMed
Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.-P. & Schlenker, M. (1996). Phase objects in synchrotron radiation hard X-ray imaging. J Phys D 29(1), 133146.CrossRefGoogle Scholar
Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J., Guigay, J.-P. & Schlenker, M. (1999). Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation X rays. Appl Phys Lett 75(19), 29122914.CrossRefGoogle Scholar
Davis, T., Gao, D., Gureyev, T., Stevenson, A. & Wilkins, S. (1995). Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373(6515), 595598.CrossRefGoogle Scholar
De Witte, Y., Boone, M., Vlassenbroeck, J., Dierick, M. & Van Hoorebeke, L. (2009). Bronnikov-aided correction for X-ray computed tomography. J Opt Soc Am A 26(4), 890894.CrossRefGoogle ScholarPubMed
Elliott, J.C. & Dover, S.D. (1982). X-ray microtomography. J Microsc (Oxford, UK) 126, 211213.CrossRefGoogle ScholarPubMed
Elliott, J.C. & Dover, S.D. (1985). X-ray microscopy using computerized axial-tomography. J Microsc (Oxford, UK) 138, 329331.CrossRefGoogle ScholarPubMed
Gelb, J., Feser, M., Tkachuk, A., Hsu, G., Chen, S., Chang, A., Fong, T., Hunter, L., Goldberger, I., Lau, S.H. & Yun, W. (2009). Sub-micron X-ray computed tomography for non-destructive 3D visualization and analysis. Microsc Microanal 15(Suppl 2), 618619.CrossRefGoogle Scholar
Groso, A., Abela, R. & Stampanoni, M. (2006). Implementation of a fast method for high resolution phase contrast tomography. Opt Express 14(18), 81038110.CrossRefGoogle ScholarPubMed
Laperle, C.M., Hamilton, T.J., Wintermeyer, P., Walker, E.J., Shi, D., Anastasio, M.A., Derdak, Z., Wands, J.R., Diebold, G. & Rose-Petruck, C. (2008). Low density contrast agents for X-ray phase contrast imaging: The use of ambient air for X-ray angiography of excised murine liver tissue. Phys Med Biol 53(23), 69116923.CrossRefGoogle ScholarPubMed
Machin, K. & Webb, S. (1994). Cone-beam X-ray microtomography of small specimens. Phys Med Biol 39, 16391657.CrossRefGoogle ScholarPubMed
Masschaele, B., Cnudde, V., Dierick, M., Jacobs, P., Van Hoorebeke, L. & Vlassenbroeck, J. (2007). UGCT: New X-ray radiography and tomography facility. Nucl Instrum Meth A 580(1), 266269.CrossRefGoogle Scholar
Matsuo, S., Fujita, H., Morishita, J., Katafuchi, T., Honda, C. & Sugiyama, J. (2008). Preliminary evaluation of a phase contrast imaging with digital mammography. In IWDM '08 Proceedings of the 9th International Workshop on Digital Mammography, pp. 130136. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Mayo, S.C., Miller, P.R., Gao, D. & Sheffield-Parker, J. (2007). Software image alignment for X-ray microtomography with submicrometre resolution using a SEM-based X-ray microscope. J Microsc (Oxford, UK) 228(Part 3), 257263.CrossRefGoogle ScholarPubMed
Mayo, S.C., Miller, P.R., Wilkins, S.W., Davis, T.J., Gao, D., Gureyev, T.E., Paganin, D., Parry, D.J., Pogany, A. & Stevenson, A.W. (2002). Quantitative X-ray projection microscopy: Phase-contrast and multi-spectral imaging. J Microsc (Oxford, UK) 207(Part 2), 7996.CrossRefGoogle ScholarPubMed
McMahon, P.J., Peele, A.G., Paterson, D., Lin, J.J.A., Irving, T.H.K., McNulty, I. & Nugent, K.A. (2003). Quantitative X-ray phase tomography with sub-micron resolution. Opt Commun 217(1-6), 5358.CrossRefGoogle Scholar
Momose, A. (1995). Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer. Nucl Instrum Meth A 352(3), 622628CrossRefGoogle Scholar
Morton, E.J., Webb, S., Bateman, J.E., Clarke, L.J. & Shelton, C.G. (1990). Three-dimensional X-ray computed microtomography for medical and biological applications. Phys Med Biol 35(7), 805820.CrossRefGoogle ScholarPubMed
Paganin, D., Mayo, S.C., Gureyev, T.E., Miller, P.R. & Wilkins, S.W. (2002). Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc (Oxford, UK) 206(Part 1), 3340.CrossRefGoogle ScholarPubMed
Peterzol, A., Olivo, A., Rigon, L., Pani, S. & Dreossi, D. (2005). The effects of the imaging system on the validity limits of the ray-optical approach to phase contrast imaging. Med Phys 32(12), 36173627.CrossRefGoogle ScholarPubMed
Pfeiffer, F., Kottler, C., Bunk, O. & David, C. (2007). Hard X-ray phase tomography with low-brilliance sources. Phys Rev Lett 98(10), 108105.CrossRefGoogle ScholarPubMed
Prell, D., Kyriakou, Y. & Kalender, W.A. (2009). Comparison of ring artefact correction methods for flat-detector CT. Phys Med Biol 54, 38813895.CrossRefGoogle ScholarPubMed
Sasov, A. (2004). X-ray nanotomography. Dev X-Ray Tomog IV 5535, 201211.Google Scholar
Sasov, A. & Van Dyck, D. (1998). Desktop X-ray microscopy and microtomography. J Microsc (Oxford, UK) 191, 151158.CrossRefGoogle ScholarPubMed
Teague, M. (1983). Deterministic phase retrieval: A Green's function solution. J Opt Soc Am 73(11), 14341441.CrossRefGoogle Scholar
Van den Bulcke, J., Boone, M., Van Acker, J. & Van Hoorebeke, L. (2009). Three-dimensional X-ray imaging and analysis of fungi on and in wood. Microsc Microanal 15(5), 395402.CrossRefGoogle ScholarPubMed
Van den Bulcke, J., Masschaele, B., Dierick, M., Van Acker, J., Stevens, M. & Van Hoorebeke, L. (2008). Three-dimensional imaging and analysis of infested coated wood with X-ray submicron CT. Int Biodeter Biodegrad 61(3), 278286.CrossRefGoogle Scholar
Vlassenbroeck, J., Dierick, M., Masschaele, B., Cnudde, V., Van Hoorebeke, L. & Jacobs, P. (2007). Software tools for quantification of X-ray microtomography. Nucl Instrum Meth A 580(1), 442445.CrossRefGoogle Scholar
Weitkamp, T., Diaz, A., David, C., Pfeiffer, F., Stampanoni, M., Cloetens, P. & Ziegler, E. (2005). X-ray phase imaging with a grating interferometer. Opt Express 13(16), 62966304.CrossRefGoogle ScholarPubMed
Weitkamp, T., Haas, D., Wegrzynek, D. & Rack, A. (2011). ANKAphase: Software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchr Rad 18, 617629.CrossRefGoogle ScholarPubMed
Wilkins, S., Gureyev, T., Gao, D., Pogany, A. & Stevenson, A. (1996). Phase-contrast imaging using polychromatic hard X-rays. Nature 384(6607), 335338.CrossRefGoogle Scholar
Withers, P.J. (2007). X-ray nanotomography. Mater Today 10(12), 2634.CrossRefGoogle Scholar