Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T15:15:16.010Z Has data issue: false hasContentIssue false

Imaging Samples in Silica Aerogel Using an Experimental Point Spread Function

Published online by Cambridge University Press:  17 December 2014

Amanda J. White*
Affiliation:
Department of Earth and Planetary Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
Denton S. Ebel
Affiliation:
Department of Earth and Planetary Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Light microscopy is a powerful tool that allows for many types of samples to be examined in a rapid, easy, and nondestructive manner. Subsequent image analysis, however, is compromised by distortion of signal by instrument optics. Deconvolution of images prior to analysis allows for the recovery of lost information by procedures that utilize either a theoretically or experimentally calculated point spread function (PSF). Using a laser scanning confocal microscope (LSCM), we have imaged whole impact tracks of comet particles captured in silica aerogel, a low density, porous SiO2 solid, by the NASA Stardust mission. In order to understand the dynamical interactions between the particles and the aerogel, precise grain location and track volume measurement are required. We report a method for measuring an experimental PSF suitable for three-dimensional deconvolution of imaged particles in aerogel. Using fluorescent beads manufactured into Stardust flight-grade aerogel, we have applied a deconvolution technique standard in the biological sciences to confocal images of whole Stardust tracks. The incorporation of an experimentally measured PSF allows for better quantitative measurements of the size and location of single grains in aerogel and more accurate measurements of track morphology.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brownlee, D., Tsou, P., Aléon, J., Alexander, C., Araki, T., Bajt, S., Baratta, G., Bastien, R., Bland, P., Bleuet, P., Borg, J., Bradley, J., Brearley, A., Brenker, F., Brennan, S., Bridges, J., Browning, N., Brucato, J., Bullock, E., Burchell, M., Busemann, H., Butterworth, A., Chaussidon, M., Cheuvront, A., Chi, M., Cintala, M., Clark, B., Clemett, S., Cody, G., Colangeli, L., Cooper, G., Cordier, P., Daghlian, C., Dai, Z., D’Hendecourt, L., Djouadi, Z., Dominguez, G., Duxbury, T., Dworkin, J., Ebel, D., Economou, T., Fakra, S., Fairey, S., Fallon, S., Ferrini, G., Ferroir, T., Fleckenstein, H., Floss, C., Flynn, G., Franchi, I., Fries, M., Gainsforth, Z., Gallien, J.P., Genge, M., Gilles, M., Gillet, P., Gilmour, J., Glavin, D., Gounelle, M., Grady, M., Graham, G., Grant, P., Green, S., Grossemy, F., Grossman, L., Grossman, J., Guan, Y., Hagiya, K., Harvey, R., Heck, P., Herzog, G., Hoppe, P., Hörz, F., Huth, J., Hutcheon, I., Ignatyev, K., Ishii, H., Ito, M., Jacob, D., Jacobsen, C., Jacobsen, S., Jones, S., Joswiak, D., Jurewicz, A., Kearsley, A., Keller, L., Khodja, H., Kilcoyne, D., Kissel, J., Krot, A., Langenhorst, F., Lanzirotti, A., Le, L., Leshin, L., Leitner, J., Lemelle, L., Leroux, H., Liu, M.C., Luening, K., Lyon, I., MacPherson, G., Marcus, M., Marhas, K., Marty, B., Matrajt, G., McKeegan, K., Meibom, A., Mennella, V., Messenger, K., Messenger, S., Mikouchi, T., Mostefaoui, S., Nakamura, T., Nakano, T., Newville, M., Nittler, L., Ohnishi, I., Ohsumi, K., Okudaira, K., Papanastassiou, D., Palma, R., Palumbo, M., Pepin, R., Perkins, D., Perronnet, M., Pianetta, P., Rao, W., Rietmeijer, F., Robert, F., Rost, D., Rotundi, A., Ryan, R., Sandford, S., Schwandt, C., See, T., Schlutter, D., Sheffield-Parker, J., Simionovici, A., Simon, S., Sitnitsky, I., Snead, C., Spencer, M., Stadermann, F., Steele, A., Stephan, T., Stroud, R., Susini, J., Sutton, S., Suzuki, Y., Taheri, M., Taylor, S., Teslich, N., Tomeoka, K., Tomioka, N., Toppani, A., Trigo-Rodríguez, J., Troadec, D., Tsuchiyama, A., Tuzzolino, A., Tyliszczak, T., Uesugi, K., Velbel, M., Vellenga, J., Vicenzi, E., Vincze, L., Warren, J., Weber, I., Weisberg, M., Westphal, A., Wirick, S., Wooden, D., Wopenka, B., Wozniakiewicz, P., Wright, I., Yabuta, H., Yano, H., Young, E., Zare, N., Zega, T., Ziegler, K., Zimmerman, L., Zinner, E. & Zolensky, M. (2006). Comet 81P/Wild 2 under a microscope. Science 314, 17111716.Google Scholar
Buzykaev, A.R., Danilyuk, A.F., Ganzhur, S.F., Kravchenko, E.A. & Onuchin, A.P. ( 1999). Measurement of optical parameters of aerogel. Nucl Instrum Meth Phys Res A 433, 396400.Google Scholar
Cannell, M.B., McMorland, A. & Soeller, C. (2006). Image enhancement by deconvolution. In Handbook of Biological Confocal Microscopy, 3rd ed., Pawley, J.B. (Ed.), pp. 488497. New York: Plenum Press.Google Scholar
Ebel, D.S., Greenberg, M., Rivers, M.L. & Newville, M. (2009). 3-dimensional textural and compositional analysis of particle tracks and fragmentation history in aerogel. Meteor Planet Sci 44, 14451463.Google Scholar
Greenberg, M. & Ebel, D.S. (2010). Laser scanning confocal microscopy of Stardust material. Geosphere 6, 515523.Google Scholar
Greenberg, M. & Ebel, D.S. (2012). Properties of original impactors estimated from three-dimensional analysis of whole Stardust tracks. Meteor Planet Sci 47, 634648.Google Scholar
Inoué, S. (2006). Foundations of confocal scanned imaging in light microscopy. In Handbook of Biological Confocal Microscopy, 3rd ed., Pawley, J.B. (Ed.), pp. 119. New York: Plenum Press.Google Scholar
Jones, S.M., Anderson, M.S., Davies, A.G., Kirby, J.P., Burchell, M.J. & Cole, M.J. (2014). Aerogel dust capture for in situ mass spectroscopic analysis. Lunar Planet Sci XLV, 2pp. abstract #2104.Google Scholar
Kearsley, A.T., Ball, A.D., Graham, G.A., Burchell, M.J., Ishii, H., Cole, M.J., Wozniakiewicz, J., Hörz, F. & See, T.H. (2007). Aerogel track morphology: Measurement, three dimensional reconstruction, and particle location using confocal laser scanning microscopy. Lunar Planet Sci XXXVIII, 2pp. abstract #1690.Google Scholar
Minsky, M. (1961). Microscopy apparatus. US Patent No. 3,013,467.Google Scholar
Parton, R.M. & Davis, I. (2006). Lifting the fog: Image restoration by deconvolution. In Cell Biology, 3rd ed., Celis, J.E. (Ed.), pp. 187200. Burlington: Academic Press.CrossRefGoogle Scholar
Pawley, J.B. (2006 a). Fundamental limits in confocal microscopy. In Handbook of Biological Confocal Microscopy, 3rd ed., Pawley, J.B. (Ed.), pp. 2042. New York: Plenum Press.Google Scholar
Pawley, J.B. (2006 b). Points, pixels, and gray levels: Digitizing image data. In Handbook of Biological Confocal Microscopy, 3rd ed., Pawley, J.B. (Ed.), pp. 5979. New York: Plenum Press.Google Scholar
SVI (2014). SVI-wiki on 3D microscopy, deconvolution, visualization, and analysis. Available at http://www.svi.nl/FrontPage (accessed November 14, 2014).Google Scholar
Tsou, P. (1995). Silica aerogel captures cosmic dust intact. J Non-Cryst Solids 186, 415427.CrossRefGoogle Scholar
Tsou, P., Brownlee, D.E., McKay, C.P., Anbar, A.D., Yano, H., Altwegg, K., Beegle, L.W., Dissly, R., Strange, N.J. & Kanik, I. (2012). LIFE: Life investigation for Enceladus a sample return mission concept in search for evidence of life. Astrobiology 12, 730742.Google Scholar
Westphal, A.J., Snead, C., Butterworth, A., Graham, G.A., Bradley, J.P., Bajt, S., Grant, P.G., Bench, G., Brennan, S. & Pianetta, P. (2004). Aerogel keystones: Extraction of complete hypervelocity impact events from aerogel collectors. Meteor Planet Sci 39, 13751386.Google Scholar