Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T12:26:12.507Z Has data issue: false hasContentIssue false

Identification of Nanocrystalline Inclusions in Bismuth-Doped Silica Fibers and Preforms

Published online by Cambridge University Press:  26 September 2016

Liudmila D. Iskhakova*
Affiliation:
Fiber Optics Research Center, Russian Academy of Sciences, 38 Vavilov Street, 119333 Moscow, Russia
Filipp O. Milovich
Affiliation:
Fiber Optics Research Center, Russian Academy of Sciences, 38 Vavilov Street, 119333 Moscow, Russia National University of Science and Technology (MISiS), Center of Material Science, 4 Leninskiy prospect, 119049 Moscow, Russia
Valery M. Mashinsky
Affiliation:
Fiber Optics Research Center, Russian Academy of Sciences, 38 Vavilov Street, 119333 Moscow, Russia
Alexander S. Zlenko
Affiliation:
Fiber Optics Research Center, Russian Academy of Sciences, 38 Vavilov Street, 119333 Moscow, Russia
Sergey E. Borisovsky
Affiliation:
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, 35 Staromonetniy per., 119027 Moscow, Russia
Evgeny M. Dianov
Affiliation:
Fiber Optics Research Center, Russian Academy of Sciences, 38 Vavilov Street, 119333 Moscow, Russia
*
* Corresponding author. [email protected]
Get access

Abstract

The nature of nanocrystalline inclusions and dopant distribution in bismuth-doped silicate fibers and preforms are studied by scanning and transmission electron microscopy, and energy and wavelength-dispersive X-ray microanalysis. The core compositions are Bi:SiO2, Bi:Al2O3–SiO2, Bi:GeO2–SiO2, Bi:Al2O3–GeO2–SiO2, and Bi:P2O5–Al2O3–GeO2–SiO2. Nanocrystals of metallic Bi, Bi2O3, SiO2, GeO2, and Bi4(GeO4)3 are observed in these glasses. These inclusions can be the reason for the background optical loss in bismuth-doped optical fibers. The bismuth concentration of 0.0048±0.0006 at% is directly measured in aluminosilicate optical fibers with effective laser generation (slope efficiency of 27% at room temperature).

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Naf, S.M., Elwan, R.L. & Elkomy, G.M. (2012). Crystallization of bismuth oxide nano-crystallites in a SiO2–PbO–Bi2O3 glass matrix. J Non Cryst Solids 358, 964968.Google Scholar
Abramov, A.N., Yashkov, M.V., Guryanov, A.N., Melkumov, M.A., Dvoretskii, D.A., Bufetov, I.A., Iskhakova, L.D., Koltashev, V.V., Kachenyuk, M.N. & Torsunov, M.F. (2014). Fabrication and optical characterization of silica fibers with a chromium-and alumina-doped core. Inorg Mater 50(12), 12831288.Google Scholar
Biryukov, A.S., Dianov, E.M., Kurkov, A.S., Devyatykh, G.G., Guryanov, A.N. & Kobis, S.V. (1996). Core-cladding interface instability as one of the source of additional losses in high doped optical fibers. Proceedings of the 22th European Conference on Optical Communications, September 15–19, Oslo, Norway, paper TuP.02.Google Scholar
Bohren, C.F. & Huffman, D.R. (2008). Absorption and Scattering of Light by Small Particles. New York, Wiley: John Wiley & Sons.Google Scholar
Bufetov, I.A. & Dianov, E.M. (2009). Bi-doped fiber lasers. Laser Phys Lett 6, 487504.Google Scholar
Dianov, E.M. (2012). Bismuth-doped optical fibers: A challenging active medium for near-IR lasers and optical amplifiers. Light Sci Appl 1, e12e18.CrossRefGoogle Scholar
Dianov, E.M. (2013). Amplification in extended transmission bands using bismuth-doped optical fibers. J Lightwave Technol 31(4), 681688.Google Scholar
Dimesso, L., Gnappi, G., Montenero, A., Fabeni, P. & Pazzi, G.P. (1991). The crystallization behaviour of bismuth germinate glasses. J Mater Sci 26, 42154219.Google Scholar
Dvoyrin, V.V., Kir’yanov, A.V., Mashinsky, V.M., Medvedkov, O.I., Umnikov, A.A., Guryanov, A.N. & Dianov, E.M. (2010). Absorption, gain, and laser action in aluminosilicate bismuth-doped optical fibers. IEEE J Quantum Electron 46(2), 182190.CrossRefGoogle Scholar
Dvoyrin, V.V., Mashinsky, V.M., Bulatov, L.I., Bufetov, I.A., Shubin, A.V., Melkumov, M.A., Kustov, E.F., Dianov, E.M., Umnikov, A.A., Khopin, V.F., Yashkov, M.V. & Guryanov, A.N. (2006). Bismuth-doped-glass optical fibers—A new active medium for lasers and amplifiers. Opt Lett 31(20), 29662968.Google Scholar
Dvoyrin, V.V., Mashinsky, V.M. & Dianov, E.M. (2008). Efficient bismuth-doped fiber lasers. IEEE J Quantum Electron 44(9), 834840.Google Scholar
Fei, Y.T., Fan, S.J., Sun, R.Y. & Xu, J.Y. (2000). Crystallizing behavior of Bi2O3-SiO2 system. J Mat Sci Lett 19, 893895.Google Scholar
Firstov, S., Alyshev, S., Melkumov, M., Riumkin, K., Shubin, A. & Dianov, E. (2014). Bismuth-doped optical fibers and fiber lasers for a spectral region of 1600–1800 nm. Opt Lett 39(24), 69276930.Google Scholar
Firstov, S.V., Bufetov, I.A., Khopin, V.F., Smirnov, A.M., Iskhakova, L.D., Vechkanov, N.N., Guryanov, A.N. & Dianov, E.M. (2009). 2 W bismuth doped fiber lasers in the wavelength range 1300-1500 nm and variation of Bi-doped fiber parameters with core composition. Laser Phys Lett 6(9), 665670.Google Scholar
Firstov, S.V., Khopin, V.F., Bufetov, I.A., Firstova, E.G., Guryanov, A.N. & Dianov, E.M. (2011). Combined excitation-emission spectroscopy of bismuth active centers in optical fibers. Opt Express 19(20), 1955119561.Google Scholar
Firstov, S.V., Shubin, A.V., Khopin, V.F., Mel’kumov, M.A., Bufetov, I.A., Medvedkov, O.I., Gur’yanov, A.N. & Dianov, E.M. (2011). Bismuth-doped germanosilicate fibre laser with 20-W output power at 1460 nm. Quantum Electron 41(7), 581583.Google Scholar
Firstova, E.G., Bufetov, I.A., Khopin, V.F., Vel’miskin, V.V., Firstov, S.V., Bufetova, G.A., Nishchev, K.N., Gur’yanov, A.N. & Dianov, E.M. (2015). Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region. Quantum Electron 45(1), 5965.Google Scholar
Fujimoto, Y. (2010). Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass. J Am Ceram Soc 93(2), 581589.Google Scholar
Gibson, B.C., Huntington, S.T., Love, J.D., Ryan, T.G., Cahill, L.W. & Elton, D.M. (2003). Controlled modification and direct characterization of multimode-fiber refractive-index profiles. Appl Opt 42(4), 627633.Google Scholar
Gur’yanov, A.N., Dianov, E.M., Lavrishchev, S.V., Mashinskiĭ, V.M., Neustruev, V.B., Nikolaĭchik, A.V. & Yushin, A.S. (1979). Investigation of the structure of preform materials and fiber-optical waveguides utilizing quartz glass doped with germanium and boron. Soviet J Quantum Electron 9, 12381242.CrossRefGoogle Scholar
Haruna, T., Iihara, J. & Onishi, M. (2006). Bismuth-doped silicate glass fiber for ultra-broadband amplification media. Proceedings of the SPIE 6389, Active and Passive Optical Components for Communications VI, October 1, Boston, USA, 638903.Google Scholar
Jiang, X., Su, L., Yu, P., Guo, X., Tang, H., Xu, X., Zheng, L., Li, H. & Xu, J. (2013). Broadband photoluminescence of Bi2O3–GeO2 binary systems: glass, glass-ceramics and crystals. Laser Phys 23, 105812105824.CrossRefGoogle Scholar
Khonton, S., Morimoto, S., Arai, Y. & Ohishi, Y. (2009). Redox equilibrium and NIR luminescence of Bi2O3—Containing glasses. Opt Mater 31, 12621268.Google Scholar
Lyytikäinen, K., Huntington, S.T., Carter, A.L.G., McNamara, P., Fleming, S., Abramczyk, J., Kaplin, I. & Schötz, G. (2004). Dopant diffusion during optical fibre drawing. Opt Express 12, 972977.CrossRefGoogle ScholarPubMed
Malinin, A.A., Zlenko, A.S., Akhmetshin, U.G. & Semjonov, S.L. (2011). Furnace chemical vapor deposition (FCVD) method for special optical fibers fabrication. Proceedings of the SPIE 7934, Optical Components and Materials VIII, 793418.CrossRefGoogle Scholar
McNamara, P., Lyytikainen, K.J., Ryan, T., Kaplin, I.J. & Ringer, S.P. (2004). Germanium-rich “starburst” cores in silica-based optical fibres fabricated by modified chemical vapour deposition. Opt Commun 230(1), 4553.Google Scholar
Polosan, S., Nastase, F. & Secu, M. (2011). Structural changes during the crystallization of the Bi4Ge3O12 glasses. J Non Cryst Solids 357, 11101113.Google Scholar
Qui, J. (2015). Bi-doped glass for photonic devices. Int J Appl Glass Sci 6(3), 275286.Google Scholar
Sanz, O., Haro-Poniatowski, E., Gonzalo, J. & Navarro, J.F. (2006). Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J Non Cryst Solids 352(8), 761768.Google Scholar
Tang, F.Z., McNamara, P., Barton, G.W. & Ringer, S.P. (2006). Nanoscale characterization of silica soots and aluminium solution doping in optical fibre fabrication. J Non Cryst Solids 352(36), 37993807.CrossRefGoogle Scholar
Torrengo, S., Paul, M.C., Halder, A., Das, S., Dhar, A., Sahu, J.K., Jain, S., Kir’janov, A.V. & d’Acapito, F. (2015). EXAFS studies of the local structure of bismuth center in multicomponent silica glass based optical fiber performs. J Non Cryst Solids 410, 8287.CrossRefGoogle Scholar
Waseda, Y., Matsubara, E. & Shinoda, K. (2011). X-Ray Diffraction Crystallography. Heidelberg: Springer.Google Scholar
Zlenko, A.S., Mashinsky, V.M., Iskhakova, L.D., Ermakov, R.P., Semjonov, S.L. & Koltashev, V.V. (2013). Spectral behaviour of bismuth centres in different steps of the FCVD process. Quantum Electron 43, 656665.Google Scholar
Zlenko, A.S., Mashinsky, V.M., Iskhakova, L.D., Semjonov, S.L., Koltashev, V.V., Karatun, N.M. & Dianov, E.M. (2012). Mechanisms of optical losses in Bi:SiO2 glass fibers. Opt Express 20(21), 2318623200.Google Scholar