No CrossRef data available.
Published online by Cambridge University Press: 02 July 2020
A high performance hyperspectral imager with high light throughput suitable for microscopy and analytical imaging was built and tested. The imager utilizes phenomenon of optical activity. The new technique provides a continuous spectral range of several hundreds of nanometers starting in deep UV. Similar spectral range starting in the near IR is also achievable.
A performance of a low cost implementation of the new technology is presented. The imager has a form of a microscope adaptor, which is inserted between the microscope and a low-cost 8-bit CCD camera. The resulting instrument is simple, robust, and highly compact. The imager module is placed in-line to the microscope imaging system and does not introduce observable image aberrations. Advantageously, the imager is transparent to conventional imaging operations, thus with the imager in-place there is no need for reconfiguration of the microscope to switch between conventional and hyperspectral video/digital imaging modes.
The presented spectral imager answers the need for a practical, sensitive, compact, and affordable imaging spectrometer. The instrument is well suited for a broad range of applications requiring rapid parallel acquisition of highly resolved concurrent spatial and spectral information such as high throughput screening, biochip analysis, remote sensing or nondestructive semiconductor testing.
1. Herman, P., Vecer, J., “Method and device for spectral analysis of light”, Czech patent 284282, 1998Google Scholar