Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T06:16:08.729Z Has data issue: false hasContentIssue false

The Geometric Compatibility Factor Determining Brittle Crack Propagation Across Boundary in Bainitic Low Alloy Steels

Published online by Cambridge University Press:  02 July 2020

Yong-Jun Oh
Affiliation:
Reactor Materials Department, Korea Atomic Energy Research Institute, P.O.Box 105 Yusong, Taejon, 305-353, Korea
Min-Chul Kim
Affiliation:
Reactor Materials Department, Korea Atomic Energy Research Institute, P.O.Box 105 Yusong, Taejon, 305-353, Korea
Jun-Hwa Hong
Affiliation:
Reactor Materials Department, Korea Atomic Energy Research Institute, P.O.Box 105 Yusong, Taejon, 305-353, Korea
Get access

Abstract

Boundary properties between two adjacent grains with different crystallographic orientation relation are important factors in deciding the mechanical properties of materials. in our previous reports, we introduced the geometric compatibility equation as a factor determining the brittle crack propagation condition into the adjacent grain in banitic low alloy steel as follows:

M = cos α · cos θ

where α is the angle between crack normal in the cracked grain-I and normal to (001) plane in the adjacent grain-II and θ is the angle between normal to (001) plane in the grain II and loading axis.(see FIG. 1) Higher M gives greater possibility to the crack propagation. The geometric compatibility factor (M) could be easily calculated from the crystallographic data obtained from Electron Backscatter Diffraction (EBSD) analysis, and successfully predicted actual crack propagation plane. We also found that there was a critical M value to arrest the brittle crack propagation at the boundaries.

Type
Metals and Alloys
Copyright
Copyright © Microscopy Society of America 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1.Shen, Z., Wagoner, R. H. and Clark, W. A. T. : Scripta Metall., 20 (1986) 921CrossRefGoogle Scholar
2.Kim, M.C., Oh, Y.J. and Hong, J.H. : Scripta mater. 45 (2000) 205CrossRefGoogle Scholar
3.M.C. Kim, , Oh, Y.J. and Hong, J.H.: Metall. Trans. A (in press (accepted in Sept. 2000))Google Scholar