Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T00:24:41.408Z Has data issue: false hasContentIssue false

Fungal-Induced Deterioration of Mural Paintings: In Situ and Mock-Model Microscopy Analyses

Published online by Cambridge University Press:  26 February 2016

Nikola Unković
Affiliation:
Department of Algology, Mycology and Lichenology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
Milica Ljaljević Grbić*
Affiliation:
Department of Algology, Mycology and Lichenology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
Miloš Stupar
Affiliation:
Department of Algology, Mycology and Lichenology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
Željko Savković
Affiliation:
Department of Algology, Mycology and Lichenology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
Aleksa Jelikić
Affiliation:
Institute for the Protection of Cultural Monuments in Serbia, Radoslava Grujića 11, 11000 Belgrade, Serbia
Dragan Stanojević
Affiliation:
Institute for the Protection of Cultural Monuments in Serbia, Radoslava Grujića 11, 11000 Belgrade, Serbia
Jelena Vukojević
Affiliation:
Department of Algology, Mycology and Lichenology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
*
*Corresponding author. [email protected]
Get access

Abstract

Fungal deterioration of frescoes was studied in situ on a selected Serbian church, and on a laboratory model, utilizing standard and newly implemented microscopy techniques. Scanning electron microscopy (SEM) with energy-dispersive X-ray confirmed the limestone components of the plaster. Pigments used were identified as carbon black, green earth, iron oxide, ocher, and an ocher/cinnabar mixture. In situ microscopy, applied via a portable microscope ShuttlePix P-400R, proved very useful for detection of invisible micro-impairments and hidden, symptomless, microbial growth. SEM and optical microscopy established that observed deterioration symptoms, predominantly discoloration and pulverization of painted layers, were due to bacterial filaments and fungal hyphal penetration, and formation of a wide range of fungal structures (i.e., melanized hyphae, chlamydospores, microcolonial clusters, Cladosporium-like conidia, and Chaetomium perithecia and ascospores). The all year-round monitoring of spontaneous and induced fungal colonization of a “mock painting” in controlled laboratory conditions confirmed the decisive role of humidity level (70.18±6.91% RH) in efficient colonization of painted surfaces, as well as demonstrated increased bioreceptivity of painted surfaces to fungal colonization when plant-based adhesives (ilinocopie, murdent), compared with organic adhesives of animal origin (bone glue, egg white), are used for pigment sizing.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassi, M. & Giacobini, C. (2001). Scanning electron microscopy: A new technique in the study of the microbiology of works of art. Int Biodeterior Biodegrad 48, 5566.Google Scholar
Bensch, K., Braun, U., Groenewald, J.Z. & Crous, P.W. (2012). The genus Cladosporium . Stud Mycol 72, 1401.Google Scholar
Chen, Y. & Xie, Y. (2002). The causes of foxing on the Chinese painting. Sci Conserv Archaeol 14, 6376.Google Scholar
Ciferri, O. (1999). Microbial degradation of paintings. Appl Environ Microbiol 65, 879885.Google Scholar
De los Rios, A. & Ascaso, C. (2005). Contributions of in situ microscopy to the current understanding of stone biodeterioration. Int Microbiol 8, 181188.Google Scholar
Diaz-Herraiz, M., Jurado, V., Cuezva, S., Laiz, L., Pallecchi, P., Tiano, P., Sanchez-Moral, S. & Sáiz-Jiménez, C. (2013). The actinobacterial colonization of Etruscan paintings. Sci Rep 3, 1440.CrossRefGoogle ScholarPubMed
Escorteganha, M.R., Santiago, A.G., Magosso, H.A., Richter, F.A. & Costa, T.G. (2013). Conservation state of mural paintings from a historical house in Florianopolis-SC, Brazil. A multidisciplinary approach. Int J Conserv Sci 4, 1324.Google Scholar
Estaugh, N., Walsh, V., Chaplin, T. & Siddal, R. (2008). Pigment Compendium: A Dictionary and Optical Microscopy of Historical Pigments. Oxford, UK: Elsevier, Butterworth-Heinemann.Google Scholar
Ettenauer, J.D., Jurado, V., Piñar, G., Miller, A.Z., Santner, M., Saiz-Jimenez, C. & Sterflinger, K. (2014). Halophilic microorganisms are responsible for the rosy discolouration of saline environments in three historical buildings with mural paintings. PLoS One 9, e103844.Google Scholar
Florian, M.L. (2002). Fungal Facts. Solving Fungal Problems in Heritage Collections. London, UK: Archetype Publications Ltd.Google Scholar
Gettens, R.J., Pease, M. & Stout, G.I. (1941). The problem of mold growth in paintings. Techn Stud Fine Arts 9, 127143.Google Scholar
Gil, M., Martins, M.R., Carvalho, M.L., Souto, C., Longelin, S., Cardoso, A., Mirão, J. & Candeias, A.E. (2015). Microscopy and microanalysis of an extreme case of salt and biodegradation in 17th century wall paintings. Microsc Microanal 21, 606616.Google Scholar
Gorbushina, A.A., Heyrman, J., Dornieden, T., Gonzalez-Delvalle, M., Krumbein, W.E., Laiz, L., Petersen, K., Sáiz-Jiménez, C. & Swings, J. (2004). Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene-Kreiensen, Germany). Int Biodeterior Biodegrad 53, 1324.Google Scholar
Gorbushina, A.A. & Petersen, K. (2000). Distribution of micro-organisms on ancient wall paintings as related to associated faunal elements. Int Biodeterior Biodegrad 46, 277284.CrossRefGoogle Scholar
Guglielminetti, M.L., De Giuli, C., Radaelli, A., Bistini, F., Carruba, G., Spera, G. & Caretta, G. (1994). Mycological and ultrastuctural studies to evaluate biodeterioration of mural paintings. Detection of fungi and mites in frescos of the Monastery of St. Damian in Assisi. Int Biodeterior Biodegrad 33, 269283.Google Scholar
Han, K., Lee, S. & Lee, H. (2013). Study of the painting methods of mural paintings in ancient tombs of Goguryeo using scanning electron microscope. Microsc Microanal 19, 157161.Google Scholar
Jurado, V., Sanchez-Moral, S. & Sáiz-Jiménez, C. (2008). Entomogenous fungi and the conservation of the cultural heritage: A review. Int Biodeterior Biodegrad 62, 325330.CrossRefGoogle Scholar
López-Miras del Mar, M., Martín-Sánchez, I., Yebra-Rodríguez, Á., Romero-Noguera, J., Bolívar-Galiano, F., Ettenauer, J., Sterflinger, K. & Piñar, G. (2013). Contribution of the microbial communities detected on an oil painting on canvas to its biodeterioration. PLoS One 8, e80198.Google Scholar
Medić, M. (2002). Stari slikarski priručnici II. Beograd, Srbija: Republički zavod za zaštitu spomenika.Google Scholar
Milanesi, C., Baldi, F., Borin, S., Vignani, R., Ciampolini, F., Faleri, C. & Cresti, M. (2006). Biodeterioration of a fresco by biofilm forming bacteria. Int Biodeterior Biodegrad 57, 168173.CrossRefGoogle Scholar
Nascimbene, J., Thüs, H., Marini, L. & Nimis, P.L. (2009). Early colonization of stone by freshwater lichens of restored habitats: A case study in northern Italy. Sci Total Environ 407, 50015006.CrossRefGoogle ScholarPubMed
Pepe, O., Sannino, L., Palomba, S., Anastasio, M., Blaiotta, G., Villani, F. & Moschetti, G. (2010). Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 165, 2132.Google Scholar
Pérez-Alonso, M., Castro, K., Álvarez, M. & Madariaga, J.M. (2004). Scientific analysis versus restorer’s expertise for diagnosis prior to a restoration process: The case of Santa Maria Church (Hermo, Asturias, North of Spain). Anal Chim Acta 524, 379389.Google Scholar
Ramírez, J.L., Santana, M.A., Galindo-Castro, I. & Gonzalez, A. (2005). The role of biotechnology in art preservation. Trends Biotechnol 23, 584588.CrossRefGoogle ScholarPubMed
Rosado, T., Mirão, J., Candeias, A. & Caldeira, A.T. (2015). Characterizing microbial diversity and damage in mural paintings. Microsc Microanal 21, 7883.Google Scholar
Saarela, M., Alakomi, H.L., Siuhko, M.L., Maunuksela, L., Raaska, L. & Mattila-Sandholm, T. (2004). Heterotrophic microorganisms in air and biofilm samples from roman catacomb, with special emphasis on actinobacteria and fungi. Int Biodeter Biodegr 54, 2737.Google Scholar
Sáiz-Jiménez, C. & Laiz, L. (2000). Occurance of halotolerant/halophilic bacterial communities in deteriorated monuments. Int Biodeter Biodegr 46, 319326.Google Scholar
Samson, R.A., Houbraken, J., Thrane, U., Frisvad, J.C. & Andersen, B. (2010). Food and Indoor Fungi. Utrecht, The Netherlands: CBS-KNAW Fungal Biodiversity Centre.Google Scholar
Samson, R.A., Noonim, P., Meijer, M., Houbraken, J.A.M.P., Frisvad, J.C. & Varga, J. (2007). Diagnostic tools to identify black aspergilli. Stud Mycol 59, 129145.Google Scholar
Schanchez-Moral, S., Luque, L., Canaveras, J., Laiz, L., Jurado, V., Hermossin, B. & Saiz-Jimenez, C. (2004). Bioinduced barium precipition in St. Callixtus and Domitilla catacombs. Ann Microbiol 54, 112.Google Scholar
Seves, A.M., Romanò, M., Maifreni, T., Seves, A., Scicolone, G., Sora, S. & Ciferri, O. (2000). A laboratory investigation of the microbial degradation of cultural heritage. In Of Microbes and Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage, Ciferri, O., Tiano, P. & Mastromei, G. (Eds.), pp 121133. New York, NY: Springer.Google Scholar
Sterflinger, K. (2010). Fungi: Their role in deterioration of cultural heritage. Fungal Biol Rev 24, 4755.Google Scholar
Sterflinger, K. & Piñar, G. (2013). Microbial deterioration of cultural heritage and works of art—tilting at windmills? Appl Microbiol Biotechnol 97, 96379646.Google Scholar
Unković, N., Ljaljević Grbić, M., Subakov Simić, G., Stupar, M., Vukojević, J., Jelikić, A. & Stanojević, D. (2015). Biodeteriogenic and toxigenic agents on 17th century mural paintings and facade of the old church of the Holy Ascension (Veliki Krčimir, Serbia). Indoor Built Environ, doi: 10.1177/1420326×15587178.Google Scholar
Urzi, C. & de Leo, F. (2001). Sampling with adhesive tape strips: An easy and rapid method to monitor microbial colonization on monument surfaces. J Microbiol Methods 44, 111.Google Scholar
Visagie, C.M., Varga, J., Houbraken, J., Meijer, M., Kocsubé, S., Yilmaz, N., Foteder, R., Seifert, K.A., Frisvad, J.C. & Samson, R.A. (2014). Ochratoxin production and taxonomy of the yellow aspergilli (Aspergillus section Circumdati). Stud Mycol 78, 161.Google Scholar
Vučković, V. (2008). Crkva Sv. Vaznesenja Gospodnjeg u Velikom Krčimiru (1169-1950) eparhija Niška. Niš, Srbija: Sven.Google Scholar
Wazny, J. & Rudniewski, P. (1972). The biodeterioration of binding materials used in artistic painting. Mater Org 7, 8192.Google Scholar
Williams, S.T. (1985). Streptomyces in biodeterioration—Their relevance, detection and identification. Int Biodeterior 21, 201209.Google Scholar
Woudenberg, J.H.C., Groenewald, J.Z., Binder, M. & Crous, P.W. (2013). Alternaria redefined. Stud Mycol 75, 171212.Google Scholar
Zalar, P., de Hoog, G.S. & Gunde-Cimerman, N. (1999). Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43, 3848.Google Scholar
Zorba, T., Pavlidou, E., Stanojlović, M., Bikiaris, D., Paraskevopoulos, K. & Nikolić, V. (2006). Technoque and palette of XIIIth century painting in the monastery Mileševa. Appl Phys A 83, 719725.CrossRefGoogle Scholar