Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T16:09:04.417Z Has data issue: false hasContentIssue false

Experimental Method to Determine the Absolute Efficiency Curve of a Wavelength Dispersive Spectrometer

Published online by Cambridge University Press:  04 July 2008

Jorge Trincavelli*
Affiliation:
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Ciudad Universitaria, 5000, Córdoba, Argentina
Silvina Limandri
Affiliation:
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Ciudad Universitaria, 5000, Córdoba, Argentina
Alejo Carreras
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Ciudad Universitaria, 5000, Córdoba, Argentina Instituto de Investigaciones en Tecnología Química, Universidad Nacional de San Luis, CC 290, 5700, San Luis, Argentina
Rita Bonetto
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Ciudad Universitaria, 5000, Córdoba, Argentina Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. Jorge Ronco, Calle 47 No257; Facultad de Ciencias Exactas y Facultad de Ingeniería de laUNLP, 1900 La Plata, Argentina
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A method for the experimental determination of the absolute efficiency of wavelength dispersive spectrometers was developed, based on the comparison of spectra measured with a wavelength dispersive system and with an energy dispersive spectrometer. The aim of studying this parameter arises because its knowledge is necessary to perform standardless analysis. A simple analytical expression was obtained for the efficiency curve for three crystals (TAP, PET, and LiF) of the spectrometer used, within an energy range from 0.77 to 10.83 keV. Although this expression is particular for the system used in this work, the method may be extended to other spectrometers and crystals for electron probe microanalysis and X-ray fluorescence.

Type
Microanalysis
Copyright
Copyright © Microscopy Society of America 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonetto, R., Carreras, A., Trincavelli, J. & Castellano, G. (2004). L-shell radiative transition rates by selective synchrotron ionization. J Phys B: At Mol Opt Phys 37, 14771488.CrossRefGoogle Scholar
Bonetto, R., Castellano, G. & Trincavelli, J. (2001). Optimization of parameters in electron probe microanalysis. X-Ray Spectrom 30, 313319.CrossRefGoogle Scholar
Carreras, A., Trincavelli, J., Bonetto, R. & Castellano, G. (2005). Determination of L-shell intensity ratios for Yb, Hf and Ta by a parameter refinement method. X-Ray Spectrom 34, 124127.CrossRefGoogle Scholar
Castellano, G., Bonetto, R., Trincavelli, J., Vasconcellos, M. & Campos, C. (2002). Optimization of K-shell intensity ratios in electron probe microanalysis. X-Ray Spectrom 31, 184187.CrossRefGoogle Scholar
Castellano, G., Osán, J. & Trincavelli, J. (2004). Analytical model for the bremsstrahlung spectrum in the 0.25–20 keV photon energy range. Spectrochimica Acta B 59, 313319.CrossRefGoogle Scholar
Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A. & Zucker, D.S. (2005). X-ray form factor, attenuation and scattering tables (version 2.1). Gaithersburg, MD: National Institute of Standards and Technology. Available at: http://physics.nist.gov/ffast (accessed December 17, 2007). [Originally published as Chantler, C.T. (2000). J Phys Chem Ref Data 29(4), 597–1048 and Chantler, C.T. (1995). J Phys Chem Ref Data 24, 71–643.]Google Scholar
Fournier, C., Merlet, C., Dungne, O. & Fialin, M. (1999). Standardless semi-quantitative analysis with WDS-EPMA. J Anal At Spectrom 14, 381386.CrossRefGoogle Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Romig, A.D. Jr., Lyman, C.E., Fiori, C. & Lifshin, E. (1994). Scanning Electron Microscopy and X-Ray Microanalysis, 2nd ed., pp. 456460. New York: Plenum Press.Google Scholar
Merlet, C. & Llovet, X. (2006). Absolute determination of characteristic X-ray yields with a wavelength-dispersive spectrometer. Microchim Acta 155, 199204.CrossRefGoogle Scholar
Merlet, C., Llovet, X. & Fernández-Varea, J.M. (2006). Absolute K-shell ionization cross sections and Lα and Lβ1 X-ray production cross sections of Ga and As by 1.5–39-keV electrons. Phys Rev A 73, 062719, 110.CrossRefGoogle Scholar
Packwood, R. & Brown, J. (1981). A Gaussian expression to describe φ(ρz) curves for quantitative electron probe microanalysis. X-Ray Spectrom 10, 138146.CrossRefGoogle Scholar
Reed, S.J.B. (1993). Electron Probe Microanalysis, 2nd ed., pp. 7175. Cambridge: Cambridge University Press.Google Scholar
Reed, S.J.B. (2002). Optimization of wavelength dispersive X-ray spectrometry analysis conditions. J Res Natl Inst Stand Technol 107, 497502.CrossRefGoogle ScholarPubMed
Riveros, J.A., Castellano, G. & Trincavelli, J. (1992). Comparison of φ(ρz) curve models in EPMA. Mikrochim Acta (12yes), 99105.CrossRefGoogle Scholar
Smith, D.G.W. & Gold, C.M. (1979). EDATA2: A Fortran IV computer program for processing wavelength- and/or energy-dispersive electron microprobe analyses. In Proceedings 14th Annual Conference of the Microbeam Analysis Society, Newbury, D.E. (Ed.), pp. 273278. San Francisco: San Francisco Press.Google Scholar
Smith, D.G.W. & Reed, S.J.B. (1981). The calculation of background in wavelength-dispersive electron microprobe analysis. X-Ray Spectrom 10, 198202.CrossRefGoogle Scholar
Statham, P.J. (1979). A ZAF procedure for microprobe analysis based on measurement of peak-to-background ratios. In Proceedings 14th Annual Conference of the Microbeam Analysis Society, Newbury, D.E. (Ed.), pp. 247253. San Francisco: San Francisco Press.Google Scholar
Trincavelli, J., Castellano, G. & Bonetto, R. (2002). L-shell transition rates for Ba, Ta, W, Pt, Pb and Bi using electron microprobe. Spectrochim Acta B 57, 919928.CrossRefGoogle Scholar
Visñovezky, C., Limandri, S., Canafoglia, M., Bonetto, R. & Trincavelli, J. (2007). Asymmetry of characteristic X-ray peaks obtained by a Si(Li) detector. Spectrochim Acta B 62, 492498.CrossRefGoogle Scholar
Wernisch, J. (1985). Quantitative electron microprobe analysis without standard samples. X-Ray Spectrom 14, 109119.CrossRefGoogle Scholar