Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T17:20:01.921Z Has data issue: false hasContentIssue false

Expanding the Dimensions of a Small, Two-Dimensional Diffraction Detector

Published online by Cambridge University Press:  11 August 2020

Xi Chen
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
Matthew R. Hauwiller
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
Abinash Kumar
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
Aubrey N. Penn
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC27606, USA
James M. LeBeau*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA
*
*Author for correspondence: James M. LeBeau, E-mail: [email protected]
Get access

Abstract

We report an approach to expand the effective number of pixels available to small, two-dimensional electron detectors. To do so, we acquire subsections of a diffraction pattern that are then accurately stitched together in post-processing. Using an electron microscopy pixel array detector (EMPAD) that has only 128 × 128 pixels, we show that the field of view can be expanded while achieving high reciprocal-space sampling. Further, we highlight the need to properly account for the detector position (rotation) and the non-orthonormal diffraction shift axes to achieve an accurate reconstruction. Applying the method, we provide examples of spot and convergent beam diffraction patterns acquired with a pixelated detector.

Type
Software and Instrumentation
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axe, J & Shirane, G (1973). Inelastic-neutron-scattering study of acoustic phonons in Nb3Sn. Phys Rev B 8, 1965.CrossRefGoogle Scholar
Bammes, BE, Rochat, RH, Jakana, J, Chen, D-H & Chiu, W (2012). Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency. J Struct Biol 177, 589601.CrossRefGoogle ScholarPubMed
Chen, Z, Weyland, M, Ercius, P, Ciston, J, Zheng, C, Fuhrer, M, D'Alfonso, A, Allen, L & Findlay, S (2016). Practical aspects of diffractive imaging using an atomic-scale coherent electron probe. Ultramicroscopy 169, 107121.CrossRefGoogle ScholarPubMed
Evans, K & Beanland, R (2014). High dynamic range electron imaging: The new standard. Microsc Microanal 20, 16011604.CrossRefGoogle ScholarPubMed
Fan, GY & Ellisman, MH (2000). Digital imaging in transmission electron microscopy. J Microsc 200, 113.CrossRefGoogle ScholarPubMed
Fundenberger, J-J, Morawiec, A, Bouzy, E & Lecomte, J-S (2003). Polycrystal orientation maps from TEM. Ultramicroscopy 96, 127137.CrossRefGoogle ScholarPubMed
Herzik, MA Jr, Wu, M & Lander, GC (2017). Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Nat Methods 14, 1075.CrossRefGoogle ScholarPubMed
Holt, M, Wu, Z, Hong, H, Zschack, P, Jemian, P, Tischler, J, Chen, H & Chiang, T-C (1999). Determination of phonon dispersions from x-ray transmission scattering: The example of silicon. Phys Rev Lett 83, 3317.CrossRefGoogle Scholar
Huang, X, Miao, H, Steinbrener, J, Nelson, J, Shapiro, D, Stewart, A, Turner, J & Jacobsen, C (2009). Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy. Opt Express 17, 1354113553.CrossRefGoogle ScholarPubMed
Jiang, Y, Chen, Z, Han, Y, Deb, P, Gao, H, Xie, S, Purohit, P, Tate, MW, Park, J, Gruner, SM, Elser, V & Muller, DA (2018). Electron ptychography of 2d materials to deep sub-ångström resolution. Nature 559, 343349.CrossRefGoogle Scholar
Lupini, AR, Chi, M, Kalinin, SV, Borisevich, AY, Idrobo, JC & Jesse, S (2015). Ptychographic imaging in an aberration corrected stem. Microsc Microanal 21, 12191220.CrossRefGoogle Scholar
Mahr, C, Müller-Caspary, K, Ritz, R, Simson, M, Grieb, T, Schowalter, M, Krause, FF, Lackmann, A, Soltau, H, Wittstock, A & Rosenauer, A (2019). Influence of distortions of recorded diffraction patterns on strain analysis by nano-beam electron diffraction. Ultramicroscopy 196, 7482.CrossRefGoogle ScholarPubMed
McMullan, G, Faruqi, A, Clare, D & Henderson, R (2014). Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156163.CrossRefGoogle Scholar
McMullan, G, Faruqi, A, Henderson, R, Guerrini, N, Turchetta, R, Jacobs, A & Van Hoften, G (2009). Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109, 11441147.CrossRefGoogle ScholarPubMed
Mir, JA, Clough, R, MacInnes, R, Gough, C, Plackett, R, Shipsey, I, Sawada, H, MacLaren, I, Ballabriga, R, Maneuski, D, O'Shea, V, McGrouther, D & Kirkland, AI (2017). Characterisation of the Medipix3 detector for 60 and 80 keV electrons. Ultramicroscopy 182, 4453.CrossRefGoogle Scholar
Müller, K, Krause, FF, Béché, A, Schowalter, M, Galioit, V, Löffler, S, Verbeeck, J, Zweck, J, Schattschneider, P & Rosenauer, A (2014). Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat Commun 5, 18.CrossRefGoogle ScholarPubMed
Müller, K, Ryll, H, Ordavo, I, Ihle, S, Strüder, L, Volz, K, Zweck, J, Soltau, H & Rosenauer, A (2012). Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device. Appl Phys Lett 101, 212110.CrossRefGoogle Scholar
Ophus, C (2019). Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microsc Microanal 25, 563582.CrossRefGoogle ScholarPubMed
Ozdol, V, Gammer, C, Jin, X, Ercius, P, Ophus, C, Ciston, J & Minor, A (2015). Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl Phys Lett 106, 253107.CrossRefGoogle Scholar
Panova, O, Ophus, C, Takacs, CJ, Bustillo, KC, Balhorn, L, Salleo, A, Balsara, N & Minor, AM (2019) Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Nat Mater 18, 860865.CrossRefGoogle ScholarPubMed
Pekin, TC, Gammer, C, Ciston, J, Ophus, C & Minor, AM (2018). In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel. Scr Mater 146, 8790.CrossRefGoogle Scholar
Pennycook, TJ, Lupini, AR, Yang, H, Murfitt, MF, Jones, L & Nellist, PD (2015). Efficient phase contrast imaging in stem using a pixelated detector. Part 1: Experimental demonstration at atomic resolution. Ultramicroscopy 151, 160167.CrossRefGoogle ScholarPubMed
Peters, JJP, Sanchez, AM, Walker, D, Whatmore, R & Beanland, R (2019). Quantitative high-dynamic-range electron diffraction of polar nanodomains in Pb2ScTaO6. Adv Mater 31, 1806498.CrossRefGoogle Scholar
Rauch, E & Dupuy, L (2005). Rapid spot diffraction patterns identification through template matching. Arch Metall Mater 50, 8799.Google Scholar
Rauch, EF, Portillo, J, Nicolopoulos, S, Bultreys, D, Rouvimov, S & Moeck, P (2010). Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristallogr Cryst Mater 225, 103109.Google Scholar
Ryll, H, Simson, M, Hartmann, R, Holl, P, Huth, M, Ihle, S, Kondo, Y, Kotula, P, Liebel, A, Müller-Caspary, K, Rosenauere, A, Sagawac, R, Schmidtb, J, Soltaub, H & Strüdera, L (2016). A pnCCD-based, fast direct single electron imaging camera for TEM and STEM. J Instrum 11, P04006.CrossRefGoogle Scholar
Sang, X, Oni, AA & LeBeau, JM (2014) Atom column indexing: Atomic resolution image analysis through a matrix representation. Microsc Microanal 20, 17641771.CrossRefGoogle ScholarPubMed
Schaffer, B, Gspan, C, Grogger, W, Kothleitner, G & Hofer, F (2008). Hyperspectral imaging in TEM: New ways of information extraction and display. Microsc Microanal 14, 7071.CrossRefGoogle Scholar
Tate, MW, Purohit, P, Chamberlain, D, Nguyen, KX, Hovden, R, Chang, CS, Deb, P, Turgut, E, Heron, JT, Schlom, DG, Ralph, DC, Fuchs, GD, Shanks, KS, Philipp, HT, Muller, DA & Gruner, SM (2016). High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc Microanal 22, 237249.CrossRefGoogle ScholarPubMed
Voyles, P, Grazul, J & Muller, D (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251273.CrossRefGoogle ScholarPubMed
Watanabe, M & Williams, D (2007). Development of diffraction imaging for orientation analysis of grains in scanning transmission electron microscopy. Microsc Microanal 13, 962963.CrossRefGoogle Scholar
Xu, R & Chiang, TC (2005). Determination of phonon dispersion relations by X-ray thermal diffuse scattering. Z Kristallogr Cryst Mater 220, 10091016.CrossRefGoogle Scholar
Yang, H, Jones, L, Ryll, H, Simson, M, Soltau, H, Kondo, Y, Sagawa, R, Banba, H, MacLaren, I & Nellist, P (2015) 4D STEM: High efficiency phase contrast imaging using a fast pixelated detector. J Phys Conf Ser 644, 012032.CrossRefGoogle Scholar