Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:44:44.249Z Has data issue: false hasContentIssue false

Examinations of Oxidation and Sulfidation of Grain Boundaries in Alloy 600 Exposed to Simulated Pressurized Water Reactor Primary Water

Published online by Cambridge University Press:  17 April 2013

D.K. Schreiber*
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
M.J. Olszta
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
D.W. Saxey
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH, UK
K. Kruska
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH, UK
K.L. Moore
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH, UK
S. Lozano-Perez
Affiliation:
University of Oxford, Department of Materials, Parks Road, Oxford OX1 3PH, UK
S.M. Bruemmer
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

High-resolution characterizations of intergranular attack in alloy 600 (Ni-17Cr-9Fe) exposed to 325°C simulated pressurized water reactor primary water have been conducted using a combination of scanning electron microscopy, NanoSIMS, analytical transmission electron microscopy, and atom probe tomography. The intergranular attack exhibited a two-stage microstructure that consisted of continuous corrosion/oxidation to a depth of ~200 nm from the surface followed by discrete Cr-rich sulfides to a further depth of ~500 nm. The continuous oxidation region contained primarily nanocrystalline MO-structure oxide particles and ended at Ni-rich, Cr-depleted grain boundaries with spaced CrS precipitates. Three-dimensional characterization of the sulfidized region using site-specific atom probe tomography revealed extraordinary grain boundary composition changes, including total depletion of Cr across a several nm wide dealloyed zone as a result of grain boundary migration.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

References

Baik, S.-I., Olszta, M.J., Bruemmer, S.M. & Seidman, D.N. (2012). Grain-boundary structure and segregation behavior in a nickel-base stainless alloy. Scripta Mater 66, 809812.CrossRefGoogle Scholar
Bruemmer, S.M. & Thomas, L.E. (2001). High-resolution analytical electron microscopy characterization of corrosion and cracking at buried interfaces. Surf Interf Anal 31, 571581.CrossRefGoogle Scholar
Christien, F., Downing, C., Moore, K.L. & Grovenor, C.R.M. (2012). Quantification of grain boundary equilibrium segregation by NanoSIMS analysis of bulk samples. Surf Interf Anal 44, 377387.CrossRefGoogle Scholar
Combrade, P., Scott, P.M., Foucault, M., Andrieu, E. & Marcus, P. (2005). Oxidation of Ni base alloys in PWR water: Oxide layers and associated damage to the base metal. In Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Allen, T.R., King, P.J. & Nelson, L. (Eds.), pp. 883890. Salt Lake City, UT: The Minerals, Metals and Materials Society.Google Scholar
Fournier, L., Calonne, O., Combrade, P., Scott, P., Chou, P. & Pathania, R. (2011). Grain boundary oxidation and embrittlement prior to crack initiation in Alloy 600 in PWR primary water. In Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Busby, J.T., Ilevbare, G. & Andresen, P.L. (Eds.), pp. 14911501. Colorado Springs, CO: The Minerals, Metals and Materials Society.Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197204.Google Scholar
Hellman, O.C., Du Rivage, J.B. & Seidman, D.N. (2003). Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95, 199205.CrossRefGoogle ScholarPubMed
Hocking, M.G. & Sidky, P.S. (1987). The hot corrosion of nickel-based ternary alloys and superalloys for gas-turbine applications. 2. The mechanism of corrosion in SO2/O2 atmospheres. Corros Sci 27, 205214.CrossRefGoogle Scholar
Koelling, S., Innocenti, N., Hellings, G., Gilbert, M., Kambham, A.K., De Meyer, K. & Vandervorst, W. (2011). Characteristics of cross-sectional atom probe analysis on semiconductor structures. Ultramicroscopy 111, 540545.Google Scholar
Lozano-Perez, S. (2008). A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis. Micron 39, 320328.CrossRefGoogle ScholarPubMed
Lozano-Perez, S., Kilburn, M.R., Yamada, T., Terachi, T., English, C.A. & Grovenor, C.R.M. (2008a). High-resolution imaging of complex crack chemistry in reactor steels by NanoSIMS. J Nucl Mater 374, 6168.Google Scholar
Lozano-Perez, S., Saxey, D.W., Yamada, T. & Terachi, T. (2010). Atom-probe tomography characterization of the oxidation of stainless steel. Scripta Mater 62, 855858.CrossRefGoogle Scholar
Lozano-Perez, S., Schröder, M., Yamada, T., Terachi, T., English, C.A. & Grovenor, C.R.M. (2008b). Using NanoSIMS to map trace elements in stainless steels from nuclear reactors. Appl Surf Sci 255, 15411543.CrossRefGoogle Scholar
Marcus, P. & Grimal, J.M. (1990). The antagonistic roles of chromium and sulfur in the passivation of Ni-Cr-Fe alloys studied by XPS and radiochemical techniques. Corros Sci 31, 377382.CrossRefGoogle Scholar
Marquis, E.A., Geiser, B.P., Prosa, T.J. & Larson, D.J. (2010a). Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc 241, 225233.CrossRefGoogle Scholar
Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K. & Todd, R.I. (2010b). Probing the improbable: Imaging C atoms in alumina. Mater Today 13, 3436.CrossRefGoogle Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). TEM sample preparation and FIB-induced damage. MRS Bull 32, 400407.Google Scholar
Miller, M.K. & Russell, K.F. (2007). Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107, 761766.CrossRefGoogle ScholarPubMed
Mulholland, M.D. & Seidman, D.N. (2011). Voltage-pulsed and laser-pulsed atom probe tomography of a multiphase high-strength low-carbon steel. Microsc Microanal 17, 950962.CrossRefGoogle ScholarPubMed
Oberdorfer, C. & Schmitz, G. (2011). On the field evaporation behavior of dielectric materials in three-dimensional atom probe: A numeric simulation. Microsc Microanal 17, 1525.Google Scholar
Olszta, M.J., Schreiber, D.K., Thomas, L.E. & Bruemmer, S.M. (2011a). Electron microscopy characterization and atom-probe tomography of intergranular attack in Alloy 600 exposed to PWR primary water. In Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Busby, J.T., Ilevbare, G. & Andresen, P.L. (Eds.), pp. 15031516. Colorado Springs, CO: The Minerals, Metals and Materials Society.Google Scholar
Olszta, M.J., Schreiber, D.K., Thomas, L.E. & Bruemmer, S.M. (2011b). Penetrative internal oxidation from alloy 690 surfaces and stress corrosion crack walls during exposure to PWR primary water. In Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Busby, J.T., Ilevbare, G. & Andresen, P.L. (Eds.), pp. 331342. Colorado Springs, CO: The Minerals, Metals and Materials Society.Google Scholar
Olszta, M.J., Schreiber, D.K., Thomas, L. & Bruemmer, S.M. (2012). High-resolution crack imaging reveals degradation processes in nuclear reactor structural materials. Adv Mater Proc 170, 1721.Google Scholar
Panter, J., Viguier, B., Cloue, J.M., Foucault, M., Combrade, P. & Andrieu, E. (2006). Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600. J Nucl Mater 348, 213221.CrossRefGoogle Scholar
Quadakkers, W.J., Wasserfuhr, C., Khanna, A.S. & Nickel, H. (1988). Influence of sulfur impurity on oxidation behavior of Ni-10Cr-9Al in air at 1000°C. Mater Sci Tech 4, 11191125.CrossRefGoogle Scholar
Schreiber, D.K., Choi, Y.-S., Liu, Y., Chiaramonti, A.N., Seidman, D.N. & Petford-Long, A.K. (2011). Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions. J Appl Phys 109, 103909. CrossRefGoogle Scholar
Scott, P.M. & Le, C.M. (1993). Some possible mechanisms of intergranular stress corrosion cracking of Alloy 600 in PWR primary water. In The Proceedings of the 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Simonen, E.P. & Gold, R.E. (Eds.), pp. 657667. Colorado Springs, CO: The Minerals, Metals and Materials Society.Google Scholar
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Ann Rev Mater Res 37, 127158.CrossRefGoogle Scholar
Seidman, D.N. & Stiller, K. (2009). A renaissance in atom-probe tomography (vol. 44, p. 1034, 1973). MRS Bull 34, 892.Google Scholar
Sorbello, F., Hughes, G.M., Lejcek, P., Heard, P.J. & Flewitt, P.E.J. (2009). Preparation of location-specific thin foils from Fe-3% Si bi- and tri-crystals for examination in a FEG-STEM. Ultramicroscopy 109, 147153.Google Scholar
Spengler, C.J. & Viswanat, R. (1972). Effect of sequential sulfidation and oxidation on propagation of sulfur in an 85 Ni-15 Cr alloy. Metall Trans 3, 161166.Google Scholar
Stiller, K. (1989). Grain boundary chemistry in nickel base alloy 600. J Phys Colloq 50 C8-329C8-334.CrossRefGoogle Scholar
Stroosnijder, M.F. & Quadakkers, W.J. (1989). A corrosion study of Ni and Ni-Cr alloys in SO2/H2O/H2 atmospheres using gas-analysis. Corros Sci 29, 10591072.CrossRefGoogle Scholar
Thomas, L.E. & Bruemmer, S.M. (2000). High-resolution characterization of intergranular attack and stress corrosion cracking of alloy 600 in high-temperature primary water. Corrosion 56, 572587.CrossRefGoogle Scholar
Thomas, L.E. & Bruemmer, S.M. (2005). Observations and insights into Pb-assisted stress corrosion cracking of alloy 600 steam generator tubes. In 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Allen, T.R. (Eds.), p. 1143. Salt Lake City, UT: TMS.Google Scholar
Thomas, L.E., Edwards, D.J., Asano, K., Ooki, S. & Bruemmer, S.M. (2007). Crack-tip characteristics in BWR service components. In 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Allen, T.R., Busby, J.T. & King, P.J. (Eds.), p. 143. Whistler, BC, Canada: Canadian Nuclear Society.Google Scholar
Thomas, L.E., Johnson, B.R., Vetrano, J.S. & Bruemmer, S.M. (2005). Microstructural and microchemical characterization of primary-side cracks in an alloy 600 nozzle head penetration and its alloy 182 J-weld from the Davis-Besse reactor vessel. In 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, Allen, T.R. (Eds.), p. 567. Salt Lake City, UT: TMS.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Thuvander, M., Miller, M.K. & Stiller, K. (1999). Grain boundary segregation during heat treatment at 600 degrees C in a model Alloy 600. Mater Sci Eng A 270, 3843.Google Scholar
Thuvander, M., Stiller, K., Blavette, D. & Menand, A. (1996). Grain boundary precipitation and segregation in Ni-16Cr-9Fe model materials. Appl Surf Sci 94/95, 343350.CrossRefGoogle Scholar
Vurpillot, F., Cerezo, A., Blavette, D. & Larson, D.J. (2004a). Modeling image distortions in 3DAP. Microsc Microanal 10, 384390.Google Scholar
Vurpillot, F., Larson, D. & Cerezo, A. (2004b). Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interface Anal 36, 552558.CrossRefGoogle Scholar
Zhu, R.Z., Guo, M.J. & Zuo, Y. (1987). A study of the mechanism of internal sulfidation—Internal oxidation during hot corrosion of Ni-Base alloys. Oxid Met 27, 253265.Google Scholar