Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T00:45:05.653Z Has data issue: false hasContentIssue false

Evaluation of Nanomechanical Properties of Tomato Root by Atomic Force Microscopy

Published online by Cambridge University Press:  18 June 2019

D. E. Nicolás-Álvarez
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, C.P. 07738, Gustavo A. Madero, CDMX, Mexico
J. A. Andraca-Adame
Affiliation:
Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional, Carretera “Pachuca-Actopan” Kilómetro 1+500, Municipio San Agustín Tlaxiaca, Hidalgo, Ciudad del Conocimiento y la Cultura, Hidalgo, Edo, Mexico
J. J. Chanona-Pérez*
Affiliation:
Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, C.P. 07738, Gustavo A. Madero, CDMX, Mexico
J. V. Méndez-Méndez
Affiliation:
Centro de Nanociencias, Micro y Nanotecnologías, Instituto Politécnico Nacional, Wilfrido Massieu s/n. UPALM, Gustavo A. Madero, 07738 CDMX, Mexico
S. Cárdenas-Pérez
Affiliation:
Chair of Geobotany and Landscape Planning, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
A. Rodríguez-Pulido
Affiliation:
Centro de Investigación en Sustentabilidad Energética y Ambiental, Universidad Autónoma del Noreste, A. C. Prolongación Constituyentes 1002, Col. Las Rusias, C.P. 87560, H. Matamoros, Tamaulipas, Mexico
*
*Author for correspondence: J.J. Chanona-Pérez, E-mail: [email protected]
Get access

Abstract

Here, different tissue surfaces of tomato root were characterized employing atomic force microscopy on day 7 and day 21 of growth through Young's modulus and plasticity index. These parameters provide quantitative information regarding the mechanical behavior of the tomato root under fresh conditions in different locations of the cross-section of root [cell surface of the epidermis, parenchyma (Pa), and vascular bundles (Vb)]. The results show that the mechanical parameters depend on the indented region, tissue type, and growth time. Thereby, the stiffness increases in the cell surface of epidermal tissue with increasing growth time (from 9.19 ± 0.68 to 13.90 ± 1.68 MPa) and the cell surface of Pa tissue displays the opposite behavior (from 1.74 ± 0.49 to 0.48 ± 0.55); the stiffness of cell surfaces of Vb tissue changes from 10.60 ± 0.58 to 6.37 ± 0.53 MPa, all cases showed a statistical difference (p < 0.05). Viscoelastic behavior dominates the mechanical forces in the tomato root. The current study is a contribution to a better understanding of the cell mechanics behavior of different tomato root tissues during growth.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cárdenas-Pérez, S, Chanona-Pérez, JJ, Güemes-Vera, N, Cybulska, J, Szymanska-Chargot, M, Chylinska, M & Zdunek, A (2018). Structural, mechanical and enzymatic study of pectin and cellulose during mango ripening. Carbohydr Polym 196, 313321.Google Scholar
Cárdenas-Pérez, S, Chanona-Pérez, JJ, Méndez-Méndez, JV, Arzate-Vázquez, I, Hernández-Varela, JD & Güemes Vera, N (2019). Recent advances in atomic force microscopy for assessing the nanomechanical properties of food materials. Trends in Food Science & Technology 87, 5972.Google Scholar
Cárdenas-Pérez, S, Chanona-Pérez, JJ, Méndez-Méndez, JV, Calderón-Domínguez, G, López-Santiago, R & Árzate-Vazquez, I (2016). Nanoindentation study on apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innovative Food Sci Emerging Technol 34, 234242.Google Scholar
Cárdenas-Pérez, S, Méndez-Méndez, JV, Chanona-Pérez, JJ, Zdunek, A, Güemes-Vera, N, Calderón-Domínguez, G & Rodríguez-González, F (2017). Prediction of the nanomechanical properties of apple tissue during its ripening process from its firmness, color and microstructural parameters. Innovative Food Sci Emerging Technol 39, 7987.Google Scholar
Esau, K (2006). Anatomía Vegetal. Meristemos, células y tejidos de las plantas: su estructura, función y desarrollo. OMEGA. 3 edición. 614 pp.Google Scholar
FAO (2016). World food and agriculture. http://www.fao.org (accessed 18 March 2018).Google Scholar
Fernandes, AN, Chen, X, Scotchford, A, Walker, J, Wells, DM, Clive, JR & Everitt, NM (2012). Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study. Phys Rev E 85, 021916, 1-021916-8.Google Scholar
Formosa-Dague, C, Duval, RE & Dague, E (2018). Cell biology of microbes and pharmacology of antimicrobial drugs explored by atomic force microscopy. Semin Cell Dev Biol 73, 165176.Google Scholar
Geitmann, A & Ortega, J (2009). Mechanics and modelling of plant cell growth. Trends Plant Sci 14, 467468.Google Scholar
Hayot, C, Forouzesh, E, Goel, A, Avramova, Z & Turner, J (2012). Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation. J. Exp Bot 63(7), 25252540.Google Scholar
Kasas, S, Stupar, P & Dietler, G (2018). AFM contribution to unveiling pro- and eukaryotic cell mechanical properties. Semin Cell Dev Biol 73, 177187.Google Scholar
Klymenko, O, Witowska-Zuber, J, Lekka, M & Kwiatek, WM (2009). Energy dissipation in the AFM elasticity measurements. Acta Phys Pol A 115, 548551.Google Scholar
Korn, R (2002). Biological hierarchies, their birth, death and evolution by natural selection. Biol Philos 17, 199221.Google Scholar
López, FB & Barday, GF (2017). Plant anatomy and physiology. In Pharmacognosy, McLaughlin, M (ed.), pp 4560. Chennai, India: Elsevier.Google Scholar
Mebatsion, HK, Verboven, P & Ho, QT (2008). Modeling fruit (micro) structures why and how? Trends Food Sci Technol 19, 5966.Google Scholar
Milani, P, Gholamirad, M, Trass, J, Arnéodo, A, Boudaoud, A, Argoul, F & Hamant, O (2011). In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67, 11161123.Google Scholar
Nicolás-Álvarez, DE, Mateo-Cid, LE, Mendoza-González, AC, Gutiérrez-Ladrón de Guevara, M & Reyes-Chaparro, A (2014). Utilization of seaweed Sargassum liebmanii extract as a stimulant of germination of Pachyrhizus erosus. JCBPSC: E Plant Biotechnol 4, 5661.Google Scholar
Niklas, KJ (2006). Plant Biomechanics: An Engineering Approach to Plant Form and Function. London: University of Chicago Press.Google Scholar
Notbohm, J, Poon, B & Ravichandran, G (2011). Analysis of nanoindentation of soft materials with an atomic force microscope. J Mater Res 27, 229237.Google Scholar
Paucelle, A, Braybrook, SA, Guillou, L, Bron, E, Kuhlemeier, E & Hofte, H (2011). Pectin-induced changes in cell wall mechanics underline organ initiation in Arabidopsis. Curr Biol 21, 17201726.Google Scholar
Radotíc, K, Rouduit, C, Simonovíc, J, Hornitschek, P, Fankhauser, C, Mutavdzic, D, Steinbach, G, Dietler, G & Kasas, S (2012). Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth. Biophys J 103, 386394.Google Scholar
Schreiber, L (2010). Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15, 546553.Google Scholar
Vergani, C, Schwarz, M, Soldati, M, Corda, A, Giadrossih, F, Chiaradia, EA, Moraando, P & Bassanelli, C (2016). Root reinforcement dynamics in subalpine spruce forest following timber harvest: A case of study in Canton Schwyz, Switzerland. Catena 143, 275288.Google Scholar
Volinsky, AA & Gerberich, WW (2003). Nanoindentation techniques for assessing mechanical reliability at nanoscale. Microelectron Eng 69, 519527.Google Scholar
Wolff, J (1976). The Law of Bone Remodeling. Berlin Heidelberg, New York: Springer-Verlag.Google Scholar
Xi, X, Kim, SH & Tittmann, B (2015). Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment. J Appl Phys 117, 19.Google Scholar
Zdunek, A & Kurenda, A (2013). Determination of the elastic properties of tomato fruit cells with an atomic force microscope. Sensors 13, 12175–11219.Google Scholar