Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T15:16:25.111Z Has data issue: false hasContentIssue false

Evaluating the Use of Synthetic Replicas for SEM Identification of Bloodstains (with Emphasis on Archaeological and Ethnographic Artifacts)

Published online by Cambridge University Press:  02 November 2015

Policarp Hortolà*
Affiliation:
Àrea de Prehistòria, Universitat Rovira i Virgili (URV), Avinguda de Catalunya 35, ES-43002 Tarragona, Catalonia, Spain Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Carrer de Marcel·lí Domingo s/n, Edifici W3 Campus Sescelades, ES-43007 Tarragona, Catalonia, Spain
*
*Corresponding author. [email protected]
Get access

Abstract

Some archaeological or ethnographic specimens are unavailable for direct examination using a scanning electron microscope (SEM) due to methodological obstacles or legal issues. In order to assess the feasibility of using SEM synthetic replicas for the identification of bloodstains (BSs) via morphology of red blood cells (RBCs), three fragments of different natural raw material (inorganic, stone; plant, wood; animal, shell) were smeared with peripheral human blood. Afterwards, molds and casts of the bloodstained areas were made using vinyl polysiloxane (VPS) silicone impression and polyurethane (PU) resin casting material, respectively. Then, the original samples and the resulting casts were coated with gold and examined in secondary-electron mode using a high-vacuum SEM. Results suggest that PU resin casts obtained from VPS silicone molds can preserve RBC morphology in BSs, and consequently that synthetic replicas are feasible for SEM identification of BSs on cultural heritage specimens made of natural raw materials. Although the focus of this study was on BSs, the method reported in this paper may be applicable to organic residues other than blood, as well as to the surface of other specimens when, for any reason, the original is unavailable for an SEM.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balme, J., Garbin, G. & Gould, R.A. (2001). Residue analysis and palaeodiet in arid Australia. Aust Archaeol 53, 16.Google Scholar
Barnes, I.E. (1978). Replication techniques for the scanning electron microscope 1. History, materials and techniques. J Dent 6, 327341.CrossRefGoogle ScholarPubMed
Bromage, T.G. (1985). Systematic inquiry in tests of negative/positive replica combinations for SEM. J Microsc 137, 209216.Google Scholar
Bush, T. (1985). Form and decoration of arrows from the highlands of Papua New Guinea. Rec Aust Mus 37, 255293.Google Scholar
Cominato, L., Valle, F., Pierini, G., Bonini, P., Biscarini, F. & D’elia, M. (2015). Flattening mountains: Micro-fabrication of planar replicas for bullet lateral striae analysis. Forensic Sci Int 247, 97104.Google Scholar
D’errico, F., Julien, M., Liolios, D., Vanhaeren, M. & Baffier, D. (2003). Many awls in our argument. Bone tool manufacture and use in the Châtelperronian and Aurignacian levels of the Grotte du Renne at Arcy-sur-Cure. In The Chronology of the Aurignacian and of the Transitional Technocomplexes. Dating, Stratigraphies, Cultural Implications. Proceedings of Symposium 6.1 of the XIVth Congress of the UISPP, University of Liège, Belgium, September 2–8, 2001, Zilhão, J. & D’Errico, F. (Eds.), pp. 247270. Lisboa: Instituto Português de Arqueologia.Google Scholar
D’errico, F. & Villa, P. (1997). Holes and grooves: The contribution of microscopy and taphonomy to the problem of art origins. J Hum Evol 33, 131.Google Scholar
Fiorenza, L., Benazzi, S. & Kullmer, O. (2009). Morphology, wear and 3D digital surface models: Materials and techniques to create high-resolution replicas of teeth. J Anthropol Sci 87, 211218.Google ScholarPubMed
Fiori, A. (1962). Detection and identification of bloodstains. In Methods of Forensic Science, vol. 1, Lundquist, F. (Ed.), pp. 243290. New York: John Wiley & Sons.Google Scholar
Fraser, D., Deroo, C.S., Cody, R.B. & Armitage, R.A. (2013). Characterization of blood in an encrustation on an African mask: Spectroscopic and direct analysis in real time mass spectrometric identification of haem. Analyst 138, 44704474.Google Scholar
Frayer, D.W., Fiore, I., Lalueza-Fox, C., Radovčić, J. & Bondioli, L. (2010). Right handed Neandertals: Vindija and beyond. J Anthropol Sci 88, 113127.Google ScholarPubMed
Galanidou, N. (2006). Analytical and ethical issues concerning organic residues on Paleolithic chipped stone tools from NW Greece. J Field Archaeol 31, 351362.Google Scholar
Galbany, J., Estebaranz, F., Martínez, L.M., Romero, A., De Juan, J., Turbón, D. & Pérez-Pérez, A. (2006). Comparative analysis of dental enamel polyvinylsiloxane impression and polyurethane casting methods for SEM research. Microsc Res Tech 69, 246252.Google Scholar
Galbany, J., Martínez, L.M. & Pérez-Pérez, A. (2004). Tooth replication techniques, SEM imaging and microwear analysis in primates: Methodological obstacles. Anthropologie (Brno) 42, 512.Google Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E., Sawyer, L. & Michael, J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. 3rd ed., vol. 1. New York, NY: Springer.Google Scholar
Gramly, R.M. (1991). Blood residues upon tools from the East Wenatchee Clovis site, Douglas County, Washington. Ohio Archaeol 41, 49.Google Scholar
Greenfield, H.J. (1999). The origins of metallurgy: Distinguishing stone from metal cut-marks on bones from archaeological sites. J Archaeol Sci 26, 797808.Google Scholar
Gusinde, M. (1924). Cuarta expedición a la Tierra del Fuego. Informe del Jefe de Sección [Fourth expedition to Tierra del Fuego. Report of the Section Head]. Publ Mus Etnol Antropol Chile 4, 767.Google Scholar
Haddon, A.C. (1900). A classification of the stone clubs of British New Guinea. J Anthropol Inst Great Brit Ireland 30, 221–250+Plates XIXXXIII.Google Scholar
Haverkort, C.M. & Lubell, D. (1999). Cutmarks on Capsian human remains: Implications for Maghreb Holocene social organization and palaeoeconomy. Int J Osteoarchaeol 9, 147169.Google Scholar
Hitchcock, G. (2004). Torres Strait origin of some stone-headed clubs from the Torassi or Bensbach River area, southwest Papua New Guinea. Mem Queensl Mus Cult Herit Ser 3, 305–313+Appendix [by Jamieson, D.N., Szymanski, R. & Rout, B.].Google Scholar
Holdgate, M.W. (1961). Man and environment in the south Chilean islands. Geogr J 127, 401414.Google Scholar
Hortolà, P. (1992). SEM analysis of red blood cells in aged human bloodstains. Forensic Sci Int 55, 139159.Google Scholar
Hortolà, P. (2002). Red blood cell haemotaphonomy of experimental human bloodstains on techno-prehistoric lithic raw materials. J Archaeol Sci 29, 733739.Google Scholar
Hortolà, P. (2013). Human bloodstains on biological materials: High-vacuum scanning electron microscope examination using specimens without previous preparation. Microsc Microanal 19, 415419.Google Scholar
HUQ, S., ABIDI, B., PAGE, D., FRAFJORD, J., DEKANICH, S. & ABIDI, M. (2008). 3D modeling from Large Chamber SEM images for micro-scale material characterization. In 2nd International Joint Topical Meeting on Emergency Preparedness and Response and Robotic and Remote Systems [CD-ROM], American Nuclear Society (Ed.), pp. 53–60. La Grange Park, IL: American Nuclear Society.Google Scholar
Johnn, H., Phipps, C., Gascoyne, S., Hawkey, C. & Rampling, M.W. (1992). A comparison of the viscometric properties of the blood from a wide range of mammals. Clin Hemorheol 12, 639647.Google Scholar
Jones, P.J. (2009). A microstratigraphic investigation into the longevity of archaeological residues, Sterkfontein, South Africa. In Archaeological Science Under a Microscope. Studies in Residue and Ancient DNA Analysis in Honour of Thomas H. Loy, Haslam, M., Robertson, G., Crowther, A., Nugent, S. & Kirkwood, L. (Eds.), pp. 2946. Canberra: ANU E Press.Google Scholar
Klein, M. & Brandt, T. (2006). Development of a high precision positioning system (PS) for a large chamber scanning electron microscope (SEM). Proc ASPE Spring Top Meet 38, 911.Google Scholar
Landtman, G. (1927). The Kiwai Papuans of British New Guinea. A Nature-Born Instance of Rosseau’s Ideal Community. London: Macmillan.Google Scholar
Langejans, G.H.J. & Lombard, M. (2015). About small things and bigger pictures: An introduction to the morphological identification of micro-residues on stone tools. In Use-Wear and Residue Analysis in Archaeology, Marreiros, J.M., Gibaja Bao, J.F. & Ferreira Bicho, N. (Eds.), pp. 199219. Cham (CH): Springer.Google Scholar
Li, X.J., Martinón-Torres, M., Meeks, N. & Xia, Y. (2012). Scanning electron microscopy imaging of tool marks on Qin bronze weapons using silicone rubber impressions. In Historical Technology, Materials and Conservation. SEM and Microanalysis, Meeks, N., Cartwright, C., Meek, A. & Mongiatti, A. (Eds.), pp. 6268. London: Archetype Publications.Google Scholar
Lombard, M. (2005). Evidence of hunting and hafting during the Middle Stone Age at Sibidu Cave, KwaZulu-Natal, South Africa: A multianalytical approach. J Hum Evol 48, 279300.Google Scholar
Lombard, M. (2008). Finding resolution for the Howiesons Poort through the microscope: Micro-residue analysis of segments from Sibudu Cave, South Africa. J Archaeol Sci 35, 2641.Google Scholar
Lombard, M. & Wadley, L. (2007). The morphological identification of micro-residues on stone tools using light microscopy: Progress and difficulties based on blind tests. J Archaeol Sci 34, 155165.Google Scholar
Loy, T.H. (1983). Prehistoric blood residues: Detection on tool surfaces and identification of species of origin. Science 220, 12691271.Google Scholar
Loy, T.H. & Dixon, E.J. (1998). Blood residues on fluted points from eastern Beringia. Am Antiq 63, 2146.Google Scholar
Lucero, M. (2004). Evaluación del Uso de Artefactos de Concha en el Poblamiento Inicial del Semiárido de Chile [Evaluating the use of shell artifacts in the early peopling of semiarid Chile]. BA Thesis. Santiago de Chile: Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile. http://tesis.uchile.cl/handle/2250/106400 (retrieved October 3, 2006).Google Scholar
Lyons, A.P. (1922). The arrows of the Upper Morehead River (Papua) bush tribes. Man 22, 145147 +Plate K.Google Scholar
Malainey, M.E. (2011). A Consumer’s Guide to Archaeological Science. Analytical Techniques. New York: Springer.Google Scholar
Mazel, V., Richardin, P. & Charlier, P. (2006). Restes biologiques dans les patines rituelles de la statuaire Dogon (Mali) [Biological remains in ritual patina of Dogon statuary (Mali)]. In 1er Colloque International de Pathographie. Loches, Avril 2005 [Conference Proceedings], Charlier, P. (Ed.), pp. 131–144. Paris: De Boccard.Google Scholar
Mcniven, I.J. & Von Gnielinski, F. (2004). Stone club head manufacture on Dauan Island, Torres Strait. Mem Queensl Mus Cult Herit Ser 3, 291304.Google Scholar
Moisan, P. (2012). The study of cuticular and epidermal features in fossil plant impressions using silicone replicas for scanning electron microscopy. Palaeontol Electron 15(2), 23A (9 pp). http://palaeo-electronica.org/content/2012-issue-2-articles/279-replicas-for-sem-examination (retrieved February 28, 2014).Google Scholar
Ollé, A. (2003). Variabilitat i Patrons Funcionals en els Sistemes Tècnics de Mode 2. Anàlisi de les deformacions d'ús en els conjunts lítics del Riparo Esterno de Grotta Paglicci (Rigano Garganico, Foggia), Aridos (Arganda, Madrid) i Galeria-TN (Atapuerca, Burgos) [Variability and functional patterns in Mode 2 technical systems. Use-wear analysis in lithic assemblages of Grotta Paglicci’s Riparo Esterno (Rignano Garganico, Foggia), Áridos (Arganda, Madrid) and Galería-TN (Sierra de Atapuerca, Burgos)]. PhD Thesis. Tarragona: Departament d’Història i Geografia, Facultat de Lletres, Universitat Rovira i Virgili. http://www.tdx.cat/handle/10803/8603 (retrieved September 18, 2007).Google Scholar
Ollé, A. & Vergès, J.M. (2008). SEM functional analysis and the mechanism of microwear formation. BAR Int Series 1783, 3949.Google Scholar
Perkins, S.L. (2003). Normal blood and bone marrow values in humans [Appendix A]. In Wintrobe’s Clinical Hematology, 11th ed., vol. 2, Greer, J.P., Foerster, J., Lukens, J.N., Rodgers, G.M., Paraskevas, F. & Glader, B. (Eds.), pp. 26972706. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Pickering, T.R., White, T.D. & Toth, N. (2000). Cutmarks on a Plio-Pleistocene hominid from Sterkfontein, South Africa. Am J Phys Anthropol 111, 579584.Google Scholar
Ragan, H.A. (2003). Comparative hematology [Appendix B]. In Wintrobe’s Clinical Hematology, 11th ed., vol. 2 Greer, J.P., Foerster, J., Lukens, J.N., Rodgers, G.M., Paraskevas, F. & Glader, B. (Eds.), pp. 27072719. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Rhyu, Y.S., Chung, Y.J. & Uhm, C.S. (2010). Scanning electron microscopic observation of human skin replica. Korean J Microsc 40, 267270.Google Scholar
Robertson, G. (2011). Changing perspectives in Australian archaeology, part VII. Aboriginal use of backed artefacts at Lapstone Creek rock-shelter, New South Wales: An integrated residue and use-wear analysis. Tech Rep Aust Mus, Online 23, 83101.Google Scholar
Robertson, G., Attenbrow, V. & Hiscock, P. (2009). Multiple uses for Australian backed artefacts. Antiquity 83, 296308.Google Scholar
Rose, J.J. (1983). A replication technique for scanning electron microscopy: Applications for anthropologists. Am J Phys Anthropol 62, 255261.Google Scholar
Shipman, P. (1986). Studies of hominid-faunal interactions at Olduvai Gorge. J Hum Evol 15, 691706.Google Scholar
SWGSTAIN (2009). Scientific Working Group on Bloodstain Pattern Analysis: Recommended terminology. Forensic Sci Commun 11 (2). http://www.fbi.gov/hq/lab/fsc/backissu/april2009/standards/2009_04_standards01.htm (retrieved May 8, 2009).Google Scholar
Taylor, C.F. (2001). Native American Weapons. London: Salamander Books.Google Scholar
Torrence, R. (1993). Ethnoarchaeology, museum collections and prehistoric exchange: Obsidian-tipped artifacts from the Admiralty Islands. World Archaeol 24, 467481.Google Scholar
Trifkovic, B., Budak, I., Todorovic, A., Hodolic, J., Puskar, T., Jevremovic, D. & Vukelic, D. (2012). Application of replica technique and SEM in accuracy measurement of ceramic crowns. Meas Sci Rev 12, 9097.Google Scholar
Ungar, P.S., Grine, F.E., Teaford, M.F. & El Zaatari, S. (2006). Dental microwear and diets of African early Homo. J Hum Evol 50, 7895.Google Scholar
Wadley, L. & Lombard, M. (2007). Small things in perspective: The contribution of our blind tests to micro-residue studies on archaeological stone tools. J Archaeol Sci 34, 10011010.Google Scholar
Wadley, L., Lombard, M. & Williamson, B. (2004). The first residue analysis blind tests: Results and lessons learnt. J Archaeol Sci 31, 14911501.Google Scholar
Waguespack, N.M., Surovell, T.A., Denoyer, A., Dallow, A., Savage, A., Hyneman, J. & Tapster, D. (2009). Making a point: Wood- versus stone-tipped projectiles. Antiquity 83, 786800.Google Scholar