Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T04:12:25.574Z Has data issue: false hasContentIssue false

Error Quantification in Strain Mapping Methods

Published online by Cambridge University Press:  16 May 2007

Elisa Guerrero
Affiliation:
Departamento de Lenguajes y Sistemas Informáticos, CASEM, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
Pedro Galindo
Affiliation:
Departamento de Lenguajes y Sistemas Informáticos, CASEM, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
Andrés Yáñez
Affiliation:
Departamento de Lenguajes y Sistemas Informáticos, CASEM, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
Teresa Ben
Affiliation:
Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
Sergio I. Molina
Affiliation:
Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
Get access

Abstract

In this article a method for determining errors of the strain values when applying strain mapping techniques has been devised. This methodology starts with the generation of a thickness/defocus series of simulated high-resolution transmission electron microscopy images of InAsxP1−x/InP heterostructures and the application of geometric phase. To obtain optimal defocusing conditions, a comparison of different defocus values is carried out by the calculation of the strain profile standard deviations among different specimen thicknesses. Finally, based on the analogy of real state strain to a step response, a characterization of strain mapping error near an interface is proposed.

Type
MATERIALS APPLICATIONS
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayle, P., Deutsch, T., Pilles, B., Lancon, F., Marty, A. & Thibault, J. (1994). Quantitative analysis of the deformation and chemical profiles of strained multilayers. Ultramicroscopy 56, 94.Google Scholar
Bergen, S.W.A. & Antoniou, A. (2004). Design of ultraspherical window functions with prescribed spectral characteristics. EURASIP J Appl Signal Proc 13, 20532065.Google Scholar
Bierwolf, R., Hohenstein, M., Phillip, F., Brandt, O., Crook, G.E. & Ploog, K. (1993). Direct measurement of local lattice distortions in strained layer structures by HREM. Ultramicroscopy 49, 273285.Google Scholar
Galindo, P.L., Yañez, A., Pizarro, J., Guerrero, E., Ben, T. & Molina, S.I. (2006). Strain mapping from HRTEM images. In Microscopy of Semiconducting Materials, Proceedings of the 14th Conference, April 11–14, 2005, Oxford, UK, Cullis, A.G. & Hutchison, J.L. (Eds.), pp. 191194. Springer Proceedings in Physics vol. 107. Berlin: Springer.
Hÿtch, M.J. & Plamann, T. (2001). Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy. Ultramicroscopy 87, 199.Google Scholar
Hÿtch, M.J., Snoeck, E. & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131.Google Scholar
Johnson, H. & Graham, M. (1993). High-Speed Digital Design. A Handbook of Black Magic. Upper Saddle River, NJ: Prentice Hall PTR.
Jouneau, P.H., Tardot, A., Feuillet, B., Mariette, H. & Cibert, J. (1994). Strain mapping of ultrathin epitaxial ZnTe and MnTe layers embedded in CdTe. Appl Phys 75, 7310.Google Scholar
Kilaas, R., Paciornik, S., Schwartz, A.J. & Tanner, L.E. (1994). Quantitative analysis of atomic displacements in HRTEM images. J Comput Assist Microsc 6, 129138.Google Scholar
Kret, S., Cywiński, G., Wojtowicz, T., Kossut, J., Delamarre, C., Laval, J.Y., Dubon, A. & Chiffmacher, G.S. (1999). Determination of Mn concentration profile in CdxMn1−xTe quantum wells with trapezoid confined potential by HRTEM. In Proceedings of the X Conference on Electron Microscopy of Solids, Warsaw-Serock, Poland, E. Jezierska & J.A. Kozobowski (Eds.), pp. 167170. Krakow, Poland: Fotobit.
Kret, S., Ruterana, P., Rosenauer, A. & Gerthsen, D. (2001). Extracting quantitative information from high resolution electron microscopy. Phys Stat Sol B 227, 247295.Google Scholar
Robertson, M.D., Corbett, J.M., Webb, J.B., Jagger, J. & Currie, J.E. (1995). Elastic strain determination in semiconductor epitaxial layers by HREM. Micron 26, 521.Google Scholar
Rosenauer, A., Gerthsen, D. & Potin, V. (2006). Strain state analysis of InGaN/GaN—Sources of error and optimized imaging conditions. Phys Stat Sol 203, 176184.Google Scholar
Rosenauer, A., Kaiser, T., Reisinger, J., Zweck, W., Gebhardt, W. & Gerthsen, D. (1996). Digital analysis of high-resolution transmission electron microscopy lattice images. Optik 102, 63.Google Scholar
Seitz, H., Ahlborn, K., Seibt, M. & Schroter, W. (1998). Determination of elastic strains in epitaxial layers by HREM. J Microsc 190, 184189.Google Scholar
Stadelmann, P.A. (1987). EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131.Google Scholar
Taraci, J.L., Hÿtch, M.J., Clement, T., Peralta, P., McCartney, P., Drucker, J. & Picraux, S.T. (2005). Strain mapping in nanowires. Nanotechnology 16, 23652371.Google Scholar
Tillmann, K., Lentzen, M. & Rosenfeld, R. (2000). Impact of column bending in high-resolution transmission electron microscopy on the strain evaluation of GaAs/InAs/GaAs heterostructures. Ultramicroscopy 83, 111.Google Scholar