Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T15:20:02.930Z Has data issue: false hasContentIssue false

Enhanced Quantification for 3D Energy Dispersive Spectrometry: Going Beyond the Limitation of Large Volume of X-Ray Emission

Published online by Cambridge University Press:  24 June 2014

Pierre Burdet*
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS, Cambridgeshire, UK
Cécile Hébert
Affiliation:
Centre Interdisciplinaire de Microscopie Electronique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 12, Lausanne 1015, Switzerland
Marco Cantoni
Affiliation:
Centre Interdisciplinaire de Microscopie Electronique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 12, Lausanne 1015, Switzerland
*
*Corresponding author. [email protected]
Get access

Abstract

This paper presents a method developed to quantify three-dimensional energy dispersive spectrometry (3D EDS) data with voxel size smaller than the volume from which X-rays are emitted. The influence of the neighboring voxels is corrected by applying recursively a complex quantification, improving thereby the accuracy of the quantification of critically small features. The enhanced quantification method is applied to simulated and measured data. A systematic improvement is obtained compared with classical quantification, proving the concept and the prospect of this method.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, C.A. & Hasler, M. (1966). X-ray range. In Proccedings of the 4th International Conference on X-ray otpics and Microanalysis, Castaing R., Deschamps P. & Philibert J. (Eds.), pp. 310. Paris: Wiley.Google Scholar
Bastin, G.F., Dijkstra, J.M., Heijligers, H.J.M. & Klepper, D. (1993). In depth profiling with the electron probe microanalyzer. Microbeam Anal 2, 2943.Google Scholar
Bastin, G. & Heijligers, H. (2000 a). A systematic database of thin-film measurements by EPMA: part I—aluminum films. X Ray Spectrom 29, 212238.3.0.CO;2-K>CrossRefGoogle Scholar
Bastin, G. & Heijligers, H. (2000 b). A systematic database of thin-film measurements by EPMA: part II—palladium films. X Ray Spectrom 29, 373397.3.0.CO;2-S>CrossRefGoogle Scholar
Bright, D. & Newbury, D. (1991). Concentration histogram imaging: A scatter diagram technique for viewing two or three related images. Anal Chem 63, 243A250A.Google Scholar
Burdet, P. (2012). Three dimensional microanalysis by energy dispersive spectrometry: Improved data processing. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.Google Scholar
Burdet, P., Vannod, J., Hessler-Wyser, A., Rappaz, M. & Cantoni, M. (2013). 3D chemical anaylsis of laser welded NiTi: Stainless steel wire using a dualbeam FIB. Acta Mater 61(8), 30903098.CrossRefGoogle Scholar
Cacciamani, G., De Keyzer, J., Ferro, R., Klotz, U., Lacaze, J. & Wollants, P. (2006). Critical evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti alloy systems. Intermetallics 14, 13121325.CrossRefGoogle Scholar
Cantoni, M., Genoud, C., Hébert, C. & Knott, G. (2010). Large volume, isotropic, 3D imaging of cell structure on the nanometer scale. Microsc Anal 24, 1316.Google Scholar
Friedli, J. (2011). Interfacial energy anisotropy and growth morphologies in aluminium-zinc Alloys. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.Google Scholar
Friel, J. & Lyman, C. (2006). Tutorial review: X-ray mapping in electron-beam instruments. Microsc Microanal 12, 225.CrossRefGoogle Scholar
Gauvin, R., Hovington, P. & Drouin, D. (1995). Quantification of spherical inclusions in the scanning electron microscope using Monte Carlo simulations. Scanning 17, 202219.CrossRefGoogle Scholar
Goldstein, J., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E. & Sawyer, L. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. New York: Plenum Publishers.CrossRefGoogle Scholar
Lucas, G., Burdet, P., Cantoni, M. & Hébert, C. (2013). Multivariate statistical analysis as a tool for the segmentation of 3D hyperspectral data. Micron 52, 4956.CrossRefGoogle Scholar
Massalski, T.B. (Ed.) (1986). Chapter Al-Zn. In Binary alloy Phase Diagrams: Volume 1 (Ac-Au to Fe-Rh), pp. 184188. Ohio: American Society for Metals.Google Scholar
Merlet, C. (1995). A new quantitative procedure for stratified samples in EPMA. Proceedings of the 29th Annual Conference of the Microbeam Analysis Society, Etz E.S. (Ed.), pp. 203204. New York: VHC.Google Scholar
Pouchou, J. & Pichoir, F. (1984). New model for quantitative x-ray microanalysis. part II: Application to in-depth analysis of heterogeneous samples. Rech Aerospatiale 5, 4765.Google Scholar
Pouchou, J.L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In Electron Probe Quantitation, Heinrich K.F.J. & Newbury D.E. (Ed.), pp. 3175. New York: Plenum Press.CrossRefGoogle Scholar
Pouchou, J.L. & Pichoir, F. (1993). Electron probe X-ray microanalysis applied to thin surface films and stratified specimens. Scanning Microsc Suppl 7, 167189.Google Scholar
Pouchou, J.-L. (2002). X-ray microanalysis of thin surface films and coatings. Mikrochim Acta 138, 133152.CrossRefGoogle Scholar
Ritchie, N.W. (2009). Spectrum simulation in DTSA-II. Microsc Microanal 15, 454468.CrossRefGoogle ScholarPubMed
Schaffer, M. & Wagner, J. (2008). Block lift-out sample preparation for 3D experiments in a dual beam focused ion beam microscope. Microchimica Acta 161, 421425.CrossRefGoogle Scholar
Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. (2007). Automated three-dimensional x-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587597.CrossRefGoogle ScholarPubMed
Small, J.A., Heinrich, K.F.J., Fiori, C.E., Myklebust, R.L., Newbury, D.E. & Dillmore, M.F. (1978). The production and characterization of glass fibers and spheres for microanalysis. Scanning Electron Microsc I, 445454.Google Scholar
Statham, P.J. & Pawley, J.B. (1978). New method for particle X-ray Micro-analysis based on peak to background measurements. Scanning Electron Microsc I, 469478.Google Scholar
Statham, P.J. (2010). Feasibility of x-ray analysis of multi-layer thin films at a single beam voltage. IOP Conf Ser: Mater Sci Eng 7, 012027.CrossRefGoogle Scholar
Thèvenaz, P., Ruttimann, U. & Unser, M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE T Image Process 7, 2741.CrossRefGoogle ScholarPubMed
Vannod, J. (2011). Laser welding of nickel-titanium and stainless steel wires: Processing, metallurgy and properties. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.Google Scholar