Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T14:09:13.687Z Has data issue: false hasContentIssue false

Electron-Excited Energy Dispersive X-Ray Spectrometry at High Speed and at High Resolution: Silicon Drift Detectors and Microcalorimeters

Published online by Cambridge University Press:  11 October 2006

Dale E. Newbury
Affiliation:
Surface and Microanalysis Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8370, USA
Get access

Abstract

Two recent developments in X-ray spectrometer technology provide dramatic improvements in analytical capabilities that impact the frontiers of electron microscopy. Silicon drift detectors (SDD) use the same physics as silicon (lithium) energy dispersive spectrometers [Si(Li) EDS] but differ in design: only 10% of the thickness of the Si(Li) EDS with an anode area below 0.1 mm2 and a complex rear surface electrode pattern that creates a lateral internal charge collection field. The SDD equals or betters the Si(Li) EDS in most measures of performance. For output versus input count rate, the SDD exceeds the Si(Li) EDS by a factor of 5 to 10 for the same resolution. This high throughput can benefit analytical measurements that are count limited, such as X-ray mapping and trace measurements. The microcalorimeter EDS determines the X-ray energy by measuring the temperature rise in a metal absorber. Operating at 100 mK, the microcalorimeter EDS achieves resolution of 2–5 eV over a photon energy range of 200 eV to 10 keV in energy dispersive operation, eliminating most peak interference situations and providing high peak-to-background to detect low fluorescence yield peaks. Chemical bonding effects on low energy (<2 keV) peak shapes can be measured.

Type
Research Article
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barkan, S., Saveliv, V., Iwanczyk, J., Feng, L., Tull, C., Patt, B., Newbury, D., Small, J., & Zaluzec, N. (2004). A new improved silicon multi-cathode detector (SMCD) for microanalysis and X-ray mapping applications. Microsc Today 12, 3637.Google Scholar
Beyer, J., DeKorte, P., Reintsema, C.D., Nam, S.W., Hilton, G.C., Vale, L.R., & Irwin, K.D. (2003). Performance of 32-channel time-division SQUID multiplexer for cryogenic detector arrays. IEEE Trans Appl Supercond 13, 649652.Google Scholar
Dyson, N.A. (1990). X-rays in Atomic and Nuclear Physics. Cambridge, UK: Cambridge University Press.
Fiori, C.E. & Swyt, C. (1991). National Institute of Standards and Technology–National Institutes of Health Desktop Spectrum Analyzer (NIST-NIH DTSA), U.S. Patent 5,299,138 (issued 1994). Further development of NIST-NIH DTSA by R.L. Myklebust and C. Swyt. The latest version of DTSA is available gratis at: www.cstl.nist.gov/div837/Division/outputs/software.htm
Fitzgerald, R., Keil, K., & Heinrich, K. (1968). Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis. Science 159, 528530.Google Scholar
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. (2003). Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. New York: Kluwer Academic Plenum Press.
Irwin, K.D., Beall, J.A., Beyer, J., Deiker, S., Doriese, W.B., Ferreira, S., Hilton, G.C., Nam, S.W., Reintsema, C.D., Ullom, J., & Vale, L.R. (2003). Superconducting multiplexers for transition-edge sensors. In International Progress on Advanced Optics and Sensors, Omori, H. & Shimizu, H.M. (Eds.), pp. 437442. Tokyo, Japan: Universal Academy Press, Inc.
Irwin, K.D. & Hilton, G.C. (2005). Transition-edge sensors. In Cryogenic Particle Detection, Ens, C. (Ed.), pp. 63142. Springer: Berlin Heidelberg.
Irwin, K.D., Hilton, G.C., Martinis, J.M., Deiker, S., Bergren, N.F., Nam, S.W., Rudman, D.A., & Wollman, D.A. (2000). A Mo-Cu superconducting transition-edge microcalorimeter with 4.5 eV energy resolution at 6 keV. Nucl Instrum Methods Phys Res A 444, 184187.Google Scholar
Irwin, K.D., Hilton, G.C., Wollman, D.A., & Martinis, J.M. (1996). X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback. Appl Phys Lett 69, 19451947.Google Scholar
Irwin, K.D., Nam, S.W., Cabrera, B., Chugg, B., Park, G.S., Welty, R.P., & Martinis, J.M. (1995). A self-biasing cryogenic particle detector utilizing electrothermal feedback and a squid readout. IEEE Trans Appl Supercond 5, 26902693.Google Scholar
Nam, S.W., Beyer, J., Hilton, G.C., Irwin, K.D., Reintsema, C.D., & Martinis, J.M. (2003). Electronics for arrays of transition edge sensors using digital signal processing. IEEE Trans Appl Supercond 13, 618621.Google Scholar
Newbury, D.E. (2005). X-ray spectrometry and spectrum image mapping at output count rates above 100 kHz with a silicon drift detector on a scanning electron microscope. Scanning 27, 227239.Google Scholar
Newbury, D.E., Irwin, K.D., Hilton, G.C., Wollman, D.A., Small, J.A., & Martinis, J.M. (2005). Electron probe microanalysis with cryogenic detectors. In Cryogenic Particle Detection, Ens, C. (Ed.), pp. 267312. Berlin, Heidelberg: Springer.
Newbury, D.E., Wollman, D.A., Hilton, G.C., Irwin, K.D., Bergren, N.F., Rudman, D.A., & Martinis, J.M. (2000). The approaching revolution in X-ray microanalysis: The microcalorimeter energy dispersive spectrometer. J Radioanal Nucl Chem 244, 627635.Google Scholar
Newbury, D.E., Wollman, D.A., Irwin, K.D., Hilton, G.C., & Martinis, J.M. (1999). Lowering the limit of detection in high spatial resolution electron beam microanalysis with the microcalorimeter energy dispersive X-ray spectrometer. Ultramicroscopy 78, 7388.Google Scholar
Struder, L., Fiorini, C., Gatti, E., Hartmann, R., Holl, P., Krause, N., Lechner, P., Longoni, A., Lutz, G., Kemmer, J., Meidinger, N., Popp, M., Soltau, H., & van Zanthier, C. (1998). High resolution non dispersive X-ray spectroscopy with state of the art silicon detectors. Mikrochim Acta Suppl. 15, 1119.Google Scholar
Williams, D.B., Goldstein, J.I., & Newbury, D.E. (1995). X-ray Spectrometry in Electron Beam Instruments. New York: Plenum Press.
Wollman, D.A., Irwin, K.D., Hilton, G.C., Dulcie, L.L., Newbury, D.E., & Martinis, J.M. (1997a). High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Micros 188, 196223.Google Scholar
Wollman, D.A., Jezewski, C., Hilton, G.C., Xiao, Q.-F., Irwin, K.D., & Martinis, J.M. (1997b). Use of polycapillary optics to increase the effective area of microcalorimeter spectrometers. Microsc Microanal 3 (Suppl. 2), 10751076.Google Scholar
Wollman, D.A., Nam, S.W., Hilton, G.C., Irwin, K.D., Bergren, N.F., Rudman, D.A., Martinis, J.M., & Newbury, D.E. (2000a). Microcalorimeter energy-dispersive spectrometry using a low voltage scanning electron microscope. J Micros 199, 3744.Google Scholar
Wollman, D.A., Nam, S.W., Newbury, D.E., Hilton, G.C., Irwin, K.D., Bergren, N.F., Deiker, S., Rudman, D.A., & Martinis, J.M. (2000b). Superconducting transition-edge-microcalorimeter X-ray spectrometer with 2 eV energy resolution at 1.5 keV. Nucl Instrum Methods Phys Res A 444, 145150.Google Scholar
Zaluzec, N. (2004). XEDS systems for the next generation analytical electron microscope. Microsc Microanal 10(Suppl. 2), 122123.Google Scholar