Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T00:22:10.311Z Has data issue: false hasContentIssue false

EELS of Niobium and Stoichiometric Niobium-Oxide Phases—Part I: Plasmon and Near-Edges Fine Structure

Published online by Cambridge University Press:  27 October 2009

David Bach*
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
Reinhard Schneider
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
Dagmar Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
Jo Verbeeck
Affiliation:
Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Wilfried Sigle
Affiliation:
Max-Planck-Institut für Metallforschung Heisenbergstraße 3, 70569 Stuttgart, Germany
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A comprehensive electron energy-loss spectroscopy study of niobium (Nb) and stable Nb-oxide phases (NbO, NbO2, Nb2O5) was carried out. In this work (Part I), the plasmons and energy-loss near-edge structures (ELNES) of all relevant Nb edges (Nb-N2,3, Nb-M4,5, Nb-M2,3, Nb-M1, and Nb-L2,3) up to energy losses of about 2600 eV and the O-K edge are analyzed with respect to achieving characteristic fingerprints of Nb in different formal oxidation states (0 for metallic Nb, +2 for NbO, +4 for NbO2, and +5 for Nb2O5). Chemical shifts of the Nb-N2,3, Nb-M4,5, Nb-M2,3, and Nb-L2,3 edges are extracted from the spectra that amount to about 4 eV as the oxidation state increases from 0 for Nb to +5 for Nb2O5. Four different microscopes, including a 200 keV ZEISS Libra with monochromator, were used. The corresponding wide range of experimental parameters with respect to the primary electron energy, convergence, and collection semi-angles as well as energy resolution allows an assessment of the influence of the experimental setup on the ELNES of the different edges. Finally, the intensity of the Nb-L2,3 white-line edges is correlated with niobium 4d-state occupancy in the different reference materials.

Type
Materials Science Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bach, D., Schneider, R. & Gerthsen, D. (2009). EELS of niobium and stoichiometric niobium-oxide phases. Part II: Quantification. Microsc Microanal 15, 524538 (this issue).CrossRefGoogle ScholarPubMed
Bach, D., Störmer, H., Schneider, R., Gerthsen, D. & Verbeeck, J. (2006). EELS investigations of different niobium oxide phases. Microsc Microanal 12, 416423.CrossRefGoogle ScholarPubMed
Batchelor, A.D., Leonard, D.N., Russell, P.E., Stevie, F.A., Griffis, D.P. & Myneni, G.R. (2007). TEM and SIMS analysis of (100), (110), and (111) single crystal niobium. AIP Conf Proc 927, 7283.CrossRefGoogle Scholar
Brydson, R. (2000). A brief review of quantitative aspects of electron energy loss spectroscopy and imaging. Mater Sci Technol 16, 11871198.CrossRefGoogle Scholar
Brydson, R. (2001). Electron Energy Loss Spectroscopy. Oxford, UK: BIOS Scientific Publishers Ltd.Google Scholar
Brydson, R., Sauer, H. & Engel, W. (1992). Electron energy loss near-edge structure as an analytical tool—The study of minerals. In Transmission Electron Energy Loss Spectroscopy in Materials Science, Disko, M.M., Ahn, C.C. & Fultz, B. (Eds.), pp. 131154. Warrendale, PA: The Minerals, Metals & Materials Society.Google Scholar
Cheetham, A.K. & Rao, C.N.R. (1976). A neutron diffraction study of niobium dioxide. Acta Crystallogr Sec B 32, 15791580.CrossRefGoogle Scholar
Cowley, J.M. (Ed.) (1992). Electron Diffraction Techniques, Volume 1. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Delheusy, M., Stierle, A., Kasper, N., Kurta, R.P., Vlad, A., Dosch, H., Antoine, C., Resta, A., Lundgren, E. & Anderson, J. (2008). X-ray investigation of subsurface interstitial oxygen at Nb/oxide interfaces. Appl Phys Lett 92, 101911.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.CrossRefGoogle Scholar
Eisenbarth, E., Velten, D. & Breme, J. (2007). Biomimetic implant coatings. Biomol Eng 24, 2732.CrossRefGoogle ScholarPubMed
Elliott, R.P. (1960). Columbium-oxygen system. Trans Am Soc Metals 52, 9901014.Google Scholar
Franchy, R., Bartke, T.U. & Gassmann, P. (1996). The interaction of oxygen with Nb(110) at 300, 80 and 20 K. Surf Sci 366, 6070.CrossRefGoogle Scholar
Gatehouse, B.M. & Wadsley, A.D. (1964). The crystal structure of the high-temperature form of niobium pentoxide. Acta Cryst 17, 15451554.CrossRefGoogle Scholar
Gmelin. (1970). Gmelin Handbuch der Anorganischen Chemie, Niob, Teil B1. Weinheim, Germany: Verlag Chemie GmbH.Google Scholar
Grundner, M. & Halbritter, J. (1980). XPS and AES studies on oxide growth and oxide coatings on niobium. J Appl Phys 51, 397405.CrossRefGoogle Scholar
Halbritter, J. (1987). On the oxidation and on the superconductivity of niobium. Appl Phys A 43, 128.CrossRefGoogle Scholar
Hyodo, T., Ohoka, J., Shimizu, Y. & Egashira, M. (2006). Design of anodically oxidized Nb2O5 films as a diode-type H2 sensing material. Sensor Actuat B-Chem 117, 359366.CrossRefGoogle Scholar
Jiang, N. & Spence, J.C.H. (2004). Electron energy-loss spectroscopy of the O K edge of NbO2, MoO2, and WO2. Phys Rev B 70, 245117-1-7.CrossRefGoogle Scholar
Keast, V.J., Scott, A.J., Brydson, R., Williams, D.B. & Bruley, J. (2001). Electron energy-loss near-edge structure—A tool for the investigation of electronic structure on the nanometre scale. J Microsc 203, 135175.CrossRefGoogle ScholarPubMed
Kovács, K., Kiss, G., Stenzel, M. & Zillgen, H. (2003). Anodic oxidation of niobium sheets and porous bodies—Heat-treatment of the Nb/Nb-oxide system. J Electrochem Soc 150, B361B366.CrossRefGoogle Scholar
Kurata, H., Lefevre, E., Colliex, C. & Brydson, R. (1993). Electron-energy-loss near-edge structures in the oxygen K-edge spectra of transition-metal oxides. Phys Rev B 47, 1376313768.CrossRefGoogle ScholarPubMed
Leapman, R.D., Grunes, L.A. & Fejes, P.L. (1982). Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys Rev B 26, 614635.CrossRefGoogle Scholar
Leitel, R., Stenzel, O., Wilbrandt, S., Gäbler, D., Janicki, V. & Kaiser, N. (2006). Optical and non-optical characterization of Nb2O5–SiO2 compositional graded-index layers and rugate structures. Thin Solid Films 497, 135141.CrossRefGoogle Scholar
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Micr Tech 8, 193200.CrossRefGoogle ScholarPubMed
Mansfield, J. (1989). Practical phase identification by convergent beam electron diffraction. J Electron Micr Tech 13, 315.CrossRefGoogle ScholarPubMed
Mansfield, J.F., Graham, R.J. & Lin, Y.P. (1986). The library of convergent beam electron diffraction, update no. 1. Norelco Reporter 33, 5466.Google Scholar
Mitterbauer, C., Kothleitner, G., Grogger, W., Zandbergen, H., Freitag, B., Tiemeijer, P. & Hofer, F. (2003). Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96, 469480.CrossRefGoogle ScholarPubMed
Olszta, M.J., Wang, J. & Dickey, E.C. (2006). Stoichiometry and valence measurements of niobium oxides using electron energy-loss spectroscopy. J Microsc 224, 233241.CrossRefGoogle ScholarPubMed
Paterson, J.H. & Krivanek, O.L. (1990). ELNES of 3d transition-metal oxides II. Variations with oxidation state and crystal structure. Ultramicroscopy 32, 319325.CrossRefGoogle Scholar
Pearson, D.H., Ahn, C.-C. & Fultz, B. (1993). White lines and d-electron occupancies for the 3d and 4d transition metals. Phys Rev B 47, 84718478.CrossRefGoogle ScholarPubMed
Pearson, D.H., Fultz, B. & Ahn, C.-C. (1988). Measurements of the 3d state occupancy in transition metals using electron energy loss spectroscopy. Appl Phys Lett 53, 14051407.CrossRefGoogle Scholar
Pialoux, A., Joyeux, M.L. & Cizeron, G. (1982). Étude du comportement du niobium sous vide par diffraction des rayons X à haute température. J Less-Common Met 87, 119.CrossRefGoogle Scholar
Qiu, Y., Smyth, D. & Kimmel, J. (2002). The stabilization of niobium-based solid electrolyte capacitors. Active Passive Electr Comp 25, 201209.CrossRefGoogle Scholar
Raebiger, H., Lany, S. & Zunger, A. (2008). Charge self-regulation upon changing the oxidation state of transition metals in insulators. Nature 453, 763766.CrossRefGoogle ScholarPubMed
Resta, R. (2008). Charge states in transition. Nature 453, 735.CrossRefGoogle ScholarPubMed
Sasaki, K., Zhang, L. & Adzic, R.R. (2008). Niobium oxide supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys 10, 159167.CrossRefGoogle ScholarPubMed
Sebastian, J.T., Seidman, D.N., Yoon, K.E., Bauer, P., Reid, T., Boffo, C. & Norem, J. (2006). Atom-probe tomography analyses of niobium superconducting RF cavity materials. Physica C 441, 7074.CrossRefGoogle Scholar
Sigle, W. (2005). Analytical transmission electron microscopy. Ann Rev Mater Res 35, 239314.CrossRefGoogle Scholar
Spence, J.C.H & Zuo, J.M. (1992). Electron Microdiffraction. New York: Plenum Press.CrossRefGoogle Scholar
Stadelmann, P.A. (1987). EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145. Available at http://cimewww.epfl.ch/people/stadelmann/jemsWebSite/jems.html.CrossRefGoogle Scholar
Störmer, H., Kleebe, H.-J. & Ziegler, G. (2007). Metastable SiCN glass matrices studied by energy-filtered electron diffraction pattern analysis. J Non-Cryst Solids 353, 28672877.CrossRefGoogle Scholar
Su, D.S., Roddatis, V., Willinger, M., Weinberg, G., Kitzelmann, E., Schlögl, R. & Knözinger, H. (2001). Tribochemical modification of the microstructure of V2O5. Catal Lett 74, 169175.CrossRefGoogle Scholar
Tanabe, K. (2003). Catalytic application of niobium compounds. Catal Today 78, 6577.CrossRefGoogle Scholar
Verbeeck, J. (2002). Electron Energy Loss Spectroscopy of Nanoscale Materials. PhD Thesis, Universiteit Antwerpen, Belgium.Google Scholar
Wieske, M., Su, D.S., Beckmann, F. & Schlögl, R. (2002). Electron-beam-induced structural variations of divanadium pentoxide (V2O5) at liquid helium temperature. Catal Lett 81, 4347.CrossRefGoogle Scholar
Wu, A.T. (2006). Investigation of oxide layer structure on niobium surface using a secondary ion mass spectrometry. Physica C 441, 7982.CrossRefGoogle Scholar
Yoon, K.E., Seidman, D.N., Bauer, P., Boffo, C. & Antoine, C. (2007). Atomic-scale chemical-analyses of niobium for superconducting radio-frequency cavities. IEEE Trans Appl Supercond 17, 13141317.CrossRefGoogle Scholar
Zednicek, S., Horacek, I., Zednicek, T., Sita, Z., McCracken, C. & Millman, W. (2005). Extended range NbO capacitors through technology and materials enhancements. In Proceedings of the 19th Passive Components Symposium (CARTS Europe 2005), Prague, Czech Republic, pp. 5763.Google Scholar
Zillgen, H., Stenzel, M. & Lohwasser, W. (2002). New niobium capacitors with stable electrical parameters. Active Passive Electr Comp 25, 147153.CrossRefGoogle Scholar