No CrossRef data available.
Article contents
The Dynamics of Mgo Surface Faceting
Published online by Cambridge University Press: 02 July 2020
Extract
The {001} surface of magnesium oxide (MgO) has been the focus of numerous studies, which were prompted by the importance of MgO for its use as a substrate for thin film growth and also as a chemical catalyst. In the present work, atomic force microscopy (AFM) was used for studying the dynamics of surface processes of MgO which occur at elevated temperatures. AFM was chosen, in part, because it allows for imaging of topographical details at the atomic level with minimal sample preparation. Additionally, because the surface morphology of the same area was traced through a series of heat treatments, scanning electron microscopy analysis would be difficult because no conductive coating could be used (such a coating may have altered the surface between subsequent heat treatments).
AFM images were recorded in contact mode, in air, on a Nanoscope III (Digital instruments, Santa Barbara, CA) using Si3N4 cantilevers (Ultralevers, Park Inst., Sunnyvale, CA) with a nominal applied force of 10-15 nN.
- Type
- Ceramics and Ceramic Composites
- Information
- Microscopy and Microanalysis , Volume 3 , Issue S2: Proceedings: Microscopy & Microanalysis '97, Microscopy Society of America 55th Annual Meeting, Microbeam Analysis Society 31st Annual Meeting, Histochemical Society 48th Annual Meeting, Cleveland, Ohio, August 10-14, 1997 , August 1997 , pp. 741 - 742
- Copyright
- Copyright © Microscopy Society of America 1997
References
3. Binning, G., Quate, C. F. and Gerber, C., Phys. Rev. Lett. 56(1986)930.CrossRefGoogle Scholar
4. Howe, J. M., “Interfaces in Materials.” 1997 John Wiley & Sons, Inc. New York.Google Scholar
5. This research has been supported by the U.S. Department of Energy under Grant No. DE-FG02-92ER45465. The authors also acknowledge the support of the Center for Interfacial Engineering, a National Science Foundation Engineering Research Center.Google Scholar