No CrossRef data available.
Article contents
Direct Observation Of Iodine Atomic Chains In I-Doped Carbon Nanotubes
Published online by Cambridge University Press: 02 July 2020
Extract
Single wall carbon nanotubes (SWNT) were doped with iodine, resulting in charge transfer between the iodine and carbon [1]. It was found that the iodine intercalation is air stable and also reversible by simple heat treatment. This behavior is in contrast to graphite and fullerenes which do not form charge transfer compounds with iodine. Although the iodine-induced charge transfer was not found in any other carbon polymorph solid, it has been found in some low dimensional organic polymers such as polyaniline,[2] forming charged linear-chain polyiodides (I3)- and (I5)-. This suggests that the geometric configuration of the carbon may play a very important role in iodine intercalation. In this study, we use Z-contrast imaging[3] in a VG Microscopes HB603U STEM to directly observe the configuration of iodine within the nanotube bundles. First-principles density-functional calculations are then used to explain the preference for the observed iodine configuration within the nanotubes.
- Type
- Atomic Structure And Microchemistry Of Interfaces
- Information
- Copyright
- Copyright © Microscopy Society of America