Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T10:40:08.222Z Has data issue: false hasContentIssue false

α,ω-Dihexylsexithiophene Self-Assembled Nanostructures on Mica: Atomic Force Microscopy Study

Published online by Cambridge University Press:  26 July 2012

Li Wang*
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Shuhong Ye
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Huizhen Yuan
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Yonghai Song*
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Haozhi Zhu
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Haoqing Hou
Affiliation:
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
Pengcheng Li
Affiliation:
Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022, People's Republic of China College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
*
Corresponding author. E-mail: [email protected]
Corresponding author. E-mail: [email protected]
Get access

Abstract

Self-assembled nanostructures of α,ω-dihexylsexithiophene (DH6T) formed by spreading DH6T solutions onto freshly cleaved mica surface were studied by atomic force microscopy. The effects of solvent and concentration on the nanostructures of DH6T molecules were studied. Flat, well-ordered, and platelet-like domains were observed on mica surfaces after treatment with various polar solvent solutions of DH6T. These domains form a uniform film with height of 2.4 ± 0.2 nm, which is consistent with a 45° tilt in the molecular conformation of DH6T on mica surfaces. The formation mechanism of these multilayers is discussed in detail.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrew, R.L. (1996). Molecular Modeling Principles and Applications, pp. 90105. London: Addison Wesley Longman.Google Scholar
Aratani, N., Osuka, A., Kim, Y.H., Jeong, D.H. & Kim, D. (2000). Extremely long, discrete meso-meso-coupled porphyrin arrays. Angew Chem Int Ed 39(8), 14581462.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Babcock, K.L. & Prater, C.B. (1995). Phase Imaging: Beyond Topography. Santa Barbara, CA: Digital Instruments.Google Scholar
Cicoira, F., Santato, C., Melucci, M., Favaretto, L., Gazzano, M., Muccini, M. & Barbarella, G. (2006). Organic light-emitting transistors based on solution-cast and vacuum-sublimed films of a rigid core thiophene oligomer. Adv Mater 18(2), 169174.CrossRefGoogle Scholar
Davies, W.B., Svec, W.A., Ratner, M.A. & Wasielewaki, M.R. (1998). Molecular-wire behaviour in p-phenylenevinylene oligomers. Nature 396, 6063.CrossRefGoogle Scholar
Egelhaaf, H.J., Oelkrug, D., Gebauer, W., Sokolowski, M., Umbach, E., Fischer, T. & Bauerle, P. (1998). Photophysical properties of β-alkylated quater-, octa-, dodeca- and hexadecatiophenes. Opt Mater 9(1-4), 5964.CrossRefGoogle Scholar
Engelkamp, H., Middelbeek, S. & Nolte, R.M.J. (1999). Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 284(5415), 785788.CrossRefGoogle ScholarPubMed
Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Santos, D.A.D., Brédas, J.L., Lögdlund, M. & Salaneck, W.R. (1999). Electroluminescence in conjugated polymers. Nature 397, 121128.CrossRefGoogle Scholar
Guo, X.G., Kim, F.S., Jenekhe, A.S. & Watson, M.D. (2009). Phthalimide-based polymers for high performance organic thin-film transistors. J Am Chem Soc 131(21), 72067207.CrossRefGoogle ScholarPubMed
Huisman, B.H., Valeton, J.J.P., Nijssen, W., Lub, J. & Hoeve, W.T. (2003). Oligothiophene-based networks applied for field-effect transistors. Adv Mater 15(23), 20022005.CrossRefGoogle Scholar
Katz, H.E. & Bao, Z. (2000). The physical chemistry of organic field-effect transistors. J Phys Chem B 104(4), 671678.CrossRefGoogle Scholar
Kolb, D.M. & Engelmann, G.E. (2000). Bridged cyclic oligoribonucleotides as model compounds for codon–anticodon pairing. Angew Chem Int Ed 39(5), 922925.Google Scholar
López, R., Villagra, D., Ferraudi, G., Moya, S.A., Guerrero, J., Huisman, B.H., Valeton, J.J.P., Nijssen, W., Lub, J. & Hoeve, W.T. (2004). Preparation and photophysical properties of precursors of inorganic macromolecules. Mono and binuclear complexes of Ru(II) and terpyridine derivatized with thiophene and 4′-(5-bromothiophene) groups. Inorg Chim Acta 357(12), 35253531.CrossRefGoogle Scholar
Mazzeo, M., Pisignano, D., Favaretto, L., Sotgiu, G., Barbarella, G., Cingolani, R. & Gigli, G. (2003). White emission from organic light emitting diodes based on energy down-convertion mechanisms. Synth Met 139(3), 675677.CrossRefGoogle Scholar
Moore, J.S. & Zhang, J. (1992). Efficient synthesis of nanoscale macrocyclic hydrocarbons. Angew Chem Int Ed 31, 922924.CrossRefGoogle Scholar
Murphy, A.R., Fréchet, J.M.J., Chang, P., Lee, J. & Subramanian, V. (2004). Organic thin film transistors from a soluble oligothiophene derivative containing thermally removable solubilizing groups. J Am Chem Soc 126(6), 15961597.CrossRefGoogle ScholarPubMed
Saini, G., Lucas, N.T. & Jacob, J. (2010). Tetrathiophenes with thiophene side chains: Effect of substitution on packing and conjugation. Tetrahedron Lett 51(22), 29562958.CrossRefGoogle Scholar
Schenning, A.P.H.J., Kilbinger, A.F.M., Biscarini, F., Cavallini, M., Cooper, H.J., Derrick, P.J., Feast, W.J., Lazzaroni, R., Leclère, Ph., McDonell, L.A., Meijer, E.W. & Meskers, S.C.J. (2002). Supramolecular organization of α,α′-disubstituted sexithiophenes. J Am Chem Soc 124(7), 12691275.CrossRefGoogle Scholar
Smaali, K., Lenfant, S., Karpe, S., Oafrain, M., Blanchard, P., Deresmes, D., Godey, S., Rochefort, A., Roncali, J. & Vuillaume, D. (2010). High on–off conductance switching ratio in optically-driven self-assembled conjugated molecular systems. ACS Nano 4(4), 24112421.CrossRefGoogle ScholarPubMed
Song, Y.H., Yao, Y., Chen, C.Y., Cui, K. & Wang, L. (2008). Structural investigation of n-hexadecanoic acid multilayers on mica surface: Atomic force microscopy study. Appl Surf Sci 254(11), 33063312.CrossRefGoogle Scholar
Surin, M., Lazzaroni, R., Feast, W.J., Schenning, A.P.H.J., Meijer, E.W. & Leclère, Ph. (2004). Oligothiophene-based nanostructures: From solutions to solid-state aggregates. Synth Met 147(1-3), 6772.CrossRefGoogle Scholar
Tamayo, J. & Garcia, R. (1996). Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12(18), 44304435.CrossRefGoogle Scholar
Tongol, B.J.V., Wang, L., Yau, S.L., Otsubo, T. & Itaya, K. (2009). Nanostructures and molecular assembly of β-blocked long oligothiophenes up to the 96-mer on Au(111) as probed by in situ electrochemical scanning tunneling microscopy. J Phys Chem C 113(31), 1381913824.CrossRefGoogle Scholar
Tongol, B.J.V., Wang, L., Yau, S.L., Otsubo, T. & Itaya, K. (2010). Direct observation of conformational changes of β-substituted duodecithiophene on a Au(111)-( × 22) substrate using in situ electrochemical STM in 0.1 M HClO4 . Langmuir 26(2), 982989.CrossRefGoogle Scholar
Tsai, W.W., Tevis, I.D., Tayi, A.S., Cui, H.G. & Stupp, S.I. (2010). Semiconducting nanowires from hairpin-shaped self-assembling sexithiophenes. J Phys Chem B 114(45), 1477814786.CrossRefGoogle ScholarPubMed
Usta, H., Lu, G., Facchetti, A. & Marks, T.J. (2006). Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. J Am Chem Soc 128(28), 90349035.CrossRefGoogle ScholarPubMed
Vaddiraju, S., Seneca, K. & Gleason, K.K. (2008). Novel strategies for the deposition of COOH functionalized conducting copolymer films and the assembly of inorganic nanoparticles on conducting polymer platforms. Adv Funct Mater 18(13), 19291938.CrossRefGoogle Scholar
Videlot-Ackermann, C., Ackermann, J., Brisset, H., Kawamura, K., Yoshimoto, N., Raynal, P., Kassmi, A.E. & Fages, F. (2005). α,ω-Distyryl oligothiophenes: High mobility semiconductors for environmentally stable organic thin film transistors. J Am Chem Soc 127(47), 1634616347.CrossRefGoogle ScholarPubMed
Wang, L., Jiang, J., Song, Y.H., Zhang, B. & Wang, E. (2003). Self-assembled monolayer growth of octanol on mica: Atomic force microscopy and Fourier-transform infrared spectroscopy studies. Langmuir 19(12), 49534957.CrossRefGoogle Scholar
Wang, L., Tongol, B.J.V., Yau, S.L., Otsubo, T. & Itaya, K. (2010). Substrate-induced varied conformation and molecular assemblies: In situ STM observation of β-substituted oligothiophene adlayers on Au(111). Langmuir 26(10), 71487152.CrossRefGoogle ScholarPubMed
Wang, L. & Wang, E. (2004). Controlled rearrangement of adsorbed undecanol films on mica surfaces induced by an atomic force microscopy tip. Langmuir 20(7), 26772682.CrossRefGoogle ScholarPubMed
Whangbo, M.H., Magonov, S.N. & Bengel, H. (1997). Tip-sample force interactions and surface stiffness in scanning probe microscopy. Probe Microsc 1(1), 2342.Google Scholar
Wu, J., Li, Y. & Feng, W. (2007). A novel method to form hollow spheres of poly(3,4-ethylenedioxythiophene): Growth from a self-assemble membrane synthesized by aqueous chemical polymerization. Synth Met 157(22-23), 10131018.CrossRefGoogle Scholar
Yang, H., Shin, T.J., Yang, L. (2005). Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors. Adv Funct Mater 15(4), 671676.CrossRefGoogle Scholar
Zambianchi, M., Maria, F.D., Cazzato, A., Gigli, G., Piacenza, M., Sala, F.D. & Barbarella, G. (2009). Microwave-assisted synthesis of thiophene fluorophores, labeling and multilabeling of monoclonal antibodies, and long lasting staining of fixed cells. J Am Chem Soc 131(31), 1089210900.CrossRefGoogle ScholarPubMed