No CrossRef data available.
Article contents
Differential Microscopy by Electron Holography With an Electron Trapezoidal Prism
Published online by Cambridge University Press: 02 July 2020
Extract
Electron holography has been successfully used in the observation of phase objects such as magnetic fields and electrostatic potentials. Electron holograms are constructed by the interference of a modulated object wave and a well-defined reference wave and in most cases the reference wave is required to be a plane wave. Frequently, however, the magnetic or electric field extends beyond the interference region, resulting in a distorted reference wave. The reconstructed wave from a hologram made with a distorted reference wave does not accurately express the object wave but the difference from the reference wave.
Differential interferometry is a useful technique in the absence of a well-defined reference wave. Some electron holography techniques using two-beam illumination for differential interferometry have been proposed. We have also proposed a new technique for differential microscopy by conventional electron off-axis holography, which utilizes an electron biprism to shear the object wave. Shearing of the object wave is essential for differential interferometry.
- Type
- Recent Developments in Microscopy for Studying Electronic and Magnetic Materials
- Information
- Microscopy and Microanalysis , Volume 3 , Issue S2: Proceedings: Microscopy & Microanalysis '97, Microscopy Society of America 55th Annual Meeting, Microbeam Analysis Society 31st Annual Meeting, Histochemical Society 48th Annual Meeting, Cleveland, Ohio, August 10-14, 1997 , August 1997 , pp. 515 - 516
- Copyright
- Copyright © Microscopy Society of America 1997