No CrossRef data available.
Article contents
Development of a 1-MV Field-Emission Electron Microscope III. Electron Optical Design and Development of Field-Emission Electron Gun
Published online by Cambridge University Press: 02 July 2020
Extract
Bright and coherent electron beams have been opening new frontiers in science and technology. So far, we have developed several field-emission transmission electron microscopes (FE-TEM) with increasing accelerating voltages to provide higher beam brightness. By using a 200-kV FE-TEM and electron holography techniques, we directly confirmed the Aharonov-Bohm effect. A 350-kV FE-TEM equipped with a low-temperature specimen stage enabled us to observe moving vortices in superconductors.2 Most Recently, we have developed a new 1-MV FE-TEM with a newly designed FE gun to obtain an even brighter and more coherent electron beam.
Electron beam brightness, Br, defined in Figure 1, is suitable for measuring the performance of electron guns, since both lens aberrations and mechanical/electrical vibrations contribute to a decrease in beam brightness, and beam coherency is proportional to (Br)1/2. Therefore, we optimized design of the illuminating system and its operation by maximizing the electron beam brightness.
- Type
- Instrument Performance
- Information
- Microscopy and Microanalysis , Volume 6 , Issue S2: Proceedings: Microscopy & Microanalysis 2000, Microscopy Society of America 58th Annual Meeting, Microbeam Analysis Society 34th Annual Meeting, Microscopical Society of Canada/Societe de Microscopie de Canada 27th Annual Meeting, Philadelphia, Pennsylvania August 13-17, 2000 , August 2000 , pp. 1142 - 1143
- Copyright
- Copyright © Microscopy Society of America