Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T01:20:18.219Z Has data issue: false hasContentIssue false

Determining Optimal Fluorescent Agent Concentrations in Dental Adhesive Resins for Imaging the Tooth/Restoration Interface

Published online by Cambridge University Press:  23 February 2017

Odair Bim Júnior
Affiliation:
Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, 17012-901 SP, Brazil
Marco A. Cebim
Affiliation:
Department of Inorganic Chemistry, Institute of Chemistry, Universidade Estadual Paulista, Araraquara, 14800-060 SP, Brazil
Maria T. Atta
Affiliation:
Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, 17012-901 SP, Brazil
Camila M. Machado
Affiliation:
Department of Prosthodontics, Bauru School of Dentistry, University of São Paulo, Bauru, 17012-901 SP, Brazil
Luciana F. Francisconi-dos-Rios
Affiliation:
Department of Operative Dentistry, School of Dentistry, University of São Paulo, São Paulo, 05508-000 SP, Brazil
Linda Wang*
Affiliation:
Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, 17012-901 SP, Brazil
*
*Corresponding author. [email protected]
Get access

Abstract

Fluorescent dyes like Rhodamine B (RB) have been used to identify the spatial distribution of adhesive restorative materials in the tooth/restoration interface. Potential effects of the addition of RB to dental adhesives were addressed in the past, but no further information is available on how to determine suitable concentrations of RB in these bonding agents for imaging in the confocal laser scanning microscope. This study provides systematical strategies for adding RB to viscous dental adhesive resins, focusing on the determination of the lowest range of dye concentrations necessary to achieve an acceptable image of the dentin/adhesive interface. It was demonstrated that optimized images of the resin distribution in dentin can be produced with 0.1–0.02 mg/mL of RB in the (tested) adhesives. Our approaches took into account aspects related to the dye concentration, photophysical parameters in different host media, specimen composition and morphology to develop a rational use of the fluorescent agent with the resin-based materials. Information gained from this work can help optimize labeling methods using dispersions of low-molecular-weight dyes in different monomer blend systems.

Type
Biological Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbeloa, F.L., Ojeda, P.R. & Arbeloa, I.L. (1989). Flourescence self-quenching of the molecular forms of Rhodamine B in aqueous and ethanolic solutions. J Lumin 44, 105112.Google Scholar
Arrais, C., Miyake, K. & Rueggeberg, F. (2009). Micromorphology of resin/dentin interfaces using 4th and 5th generation dual-curing adhesive/cement systems: A confocal laser scanning microscope analysis. J Adhes Dent 11, 1526.Google Scholar
Beija, M., Afonso, C.A.M. & Martinho, J.M.G. (2009). Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem Soc Rev 38, 2410.CrossRefGoogle Scholar
Bernas, T., Robinson, J.P., Asem, E.K. & Rajwa, B. (2005). Loss of image quality in photobleaching during microscopic imaging of fluorescent probes bound to chromatin. J Biomed Opt 10, 64015.CrossRefGoogle ScholarPubMed
D’Alpino, P.H.P., Pereira, J.C., Svizero, N.R., Rueggeberg, F.A. & Pashley, D.H. (2006 a). Use of fluorescent compounds in assessing bonded resin-based restorations: A literature review. J Dent 34, 623634.Google Scholar
D’Alpino, P.H.P., Pereira, J.C., Svizero, N.R., Rueggeberg, F.A. & Pashley, D.H. (2006 b). Factors affecting use of fluorescent agents in identification of resin-based polymers. J Adhes Dent 8, 285292.Google Scholar
Ding, P.G.F., Matzer, A. R. a H., Wolff, D., Mente, J., Pioch, T., Staehle, H.J. & Dannewitz, B. (2010). Relationship between microtensile bond strength and submicron hiatus at the composite-dentin interface using CLSM visualization technique. Dent Mater 26, 257263.Google Scholar
Fikry, M., Omar, M.M. & Ismail, L.Z. (2011). Effect of host medium on the fluorescence emission intensity of rhodamine B in liquid and solid phase. J Fluoresc 19, 741746.Google Scholar
Foxton, R.M., Melo, L., Stone, D.G., Pilecki, P., Sherriff, M. & Watson, T.F. (2008). Long-term durability of one-step adhesive-composite systems to enamel and dentin. Oper Dent 33, 651657.Google Scholar
Francisconi, L., Graeff, M.S., Martins Lde, M., Franco, E.B., Mondelli, R.F., Francisconi, P.A. & Pereira, J.C. (2009). The effects of occlusal loading on the margins of cervical restorations. J Am Dent Assoc 140, 12751282.CrossRefGoogle ScholarPubMed
Garini, Y., Young, I.T. & McNamara, G. (2006). Spectral imaging: Principles and applications. Cytometry A 69, 735747.Google Scholar
Ghauharali, R.I. & Brakenhoff, G.J. (2000). Fluorescence photobleaching-based image standardization for fluorescence microscopy. J Microsc 198, 88100.Google Scholar
Griffiths, B., Watson, T. & Sherriff, M. (1999). The influence of dentine bonding systems and their handling characteristics on the morphology and micropermeability of the dentine adhesive interface. J Dent 27, 6371.Google Scholar
Ionta, F.Q., Boteon, A.P., Moretto, M.J., Júnior, O.B., Honório, H.M., Silva, T.C., Wang, L. & Rios, D. (2016). Penetration of resin-based materials into initial erosion lesion: A confocal microscopic study. Microsc Res Tech 79, 7280.Google Scholar
Khalilzadeh, J., Ghorbanzadeh, A.M. & Moghimi, A. (2008). Influence of dyes doped in solid state polymeric matrices as spectral converters on efficiency of a flash-lamp pumped Nd:YAG laser. Opt Mater 30, 15271530.Google Scholar
Krejci, I., Schüpbach, P., Balmelli, F. & Lutz, F. (1999). The ultrastructure of a compomer adhesive interface in enamel and dentin, and its marginal adaptation under dentinal fluid as compared to that of a composite. Dent Mater 15, 349358.Google Scholar
Kristoffersen, A.S., Erga, S.R., Hamre, B. & Frette, Ø. (2014). Testing fluorescence lifetime standards using two-photon excitation and time-domain instrumentation: Rhodamine B, coumarin 6 and lucifer yellow. J Fluoresc 24, 10151024.Google Scholar
Lakowicz, J.R. (2006). Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy, Lakowicz, J.R. (Ed.), pp. 27–62. Boston, MA: Springer US.CrossRefGoogle Scholar
Paddock, S.W. & Eliceiri, K.W. (2014). In Confocal Microscopy: Methods and Protocols. Paddock, S.W. (Ed.), pp. 9–47. New York, NY: Springer New York.Google Scholar
Pashley, D., Tay, F. & Breschi, L. (2011). State of the art etch-and-rinse adhesives. Dent Mater 27, 116.Google Scholar
Pawley, J. (2000). The 39 steps: A cautionary tale of quantitative 3-D fluorescence microscopy. BioTechniques 28, 884886, 888.Google Scholar
Penzkofer, A. & Lu, Y. (1986). Fluorescence quenching of rhodamine 6G in methanol at high concentration. Chem Phys 103, 399405.Google Scholar
Petit, J., Denis-Gay, M. & Ratinaud, M. (1993). Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Biol Cell 78, 113.Google Scholar
Pioch, T., Jakob, H., Garcia-Godoy, F., Gotz, H., Dorfer, C.E. & Staehle, H.J. (2003). Surface characteristics of dentin experimentally exposed to hydrofluoric acid. Eur J Oral Sci 111, 359364.Google Scholar
Pioch, T., Stotz, S., Staehle, H.J. & Duschner, H. (1997). Applications of confocal laser scanning microscopy to dental bonding. Adv Dent Res 11, 453461.CrossRefGoogle ScholarPubMed
Sampaio, P.C.P., de Almeida Júnior, A. A., Francisconi, L.F., Casas-Apayco, L.C., Pereira, J.C., Wang, L. & Atta, M.T. (2011). Effect of conventional and resin-modified glass-ionomer liner on dentin adhesive interface of Class I cavity walls after thermocycling. Oper Dent 36, 403412.Google Scholar
Sauro, S., Pashley, D.H., Mannocci, F., Tay, F.R., Pilecki, P., Sherriff, M. & Watson, T.F. (2008). Micropermeability of current self-etching and etch-and-rinse adhesives bonded to deep dentine: A comparison study using a double-staining/confocal microscopy technique. Eur J Oral Sci 116, 184193.CrossRefGoogle ScholarPubMed
Semwogerere, D. & Weeks, E.R. (2008). Confocal microscopy. In Encyclopedia of Biomaterials and Biomedical Engineering, Wnek, G.E. & Bowlin, G.L. (Eds.), pp. 705714. New York, NY: Informa Healthcare, USA.Google Scholar
Spencer, P., Ye, Q., Park, J., Topp, E.M., Misra, A., Marangos, O., Wang, Y., Bohaty, B.S., Singh, V., Sene, F., Eslick, J., Camarda, K. & Katz, J.L. (2010). Adhesive/dentin interface: The weak link in the composite restoration. Ann Biomed Eng 38, 19892003.Google Scholar
Thomas, S., Grohens, Y. & Jyotishkumar, P. (Eds.) (2014). Characterization of Polymer Blends. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
Tjäderhane, L., Nascimento, F.D., Breschi, L., Mazzoni, A., Tersariol, I.L.S., Geraldeli, S., Tezvergil-Mutluay, A., Carrilho, M., Carvalho, R.M., Tay, F.R. & Pashley, D.H. (2013). Strategies to prevent hydrolytic degradation of the hybrid layer – a review. Dent Mater 29, 9991011.Google Scholar
Toledano, M., Cabello, I., Aguilera, F.S., Osorio, E., Toledano-Osorio, M. & Osorio, R. (2015). Improved sealing and remineralization at the resin-dentin interface after phosphoric acid etching and load cycling. Microsc Microanal 21, 15301548.Google Scholar
Toledano, M., Osorio, E., Aguilera, F.S., Sauro, S., Cabello, I. & Osorio, R. (2014). In vitro mechanical stimulation promoted remineralization at the resin/dentin interface. J Mech Behav Biomed Mater 30, 6174.Google Scholar
Toledano, M., Sauro, S., Cabello, I., Watson, T. & Osorio, R. (2013). A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29, e142e152.Google Scholar
Tsien, R.Y., Ernst, L. & Waggoner, A. (2006). Fluorophores for confocal microscopy: Photophysics and photochemistry. In Handbook of Biological Confocal Microscopy, Pawley, J.B. (Ed.), pp. 338352. New York: SpringerScience+Business Media.Google Scholar
Valeur, B. (2001). Molecular Fluorescence. Weinheim, FRG: Wiley-VCH Verlag GmbH.Google Scholar
Van Landuyt, K.L., Snauwaert, J., De Munck, J., Peumans, M., Yoshida, Y., Poitevin, A., Coutinho, E., Suzuki, K., Lambrechts, P. & Van Meerbeek, B. (2007). Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 28, 37573785.Google Scholar
Vergeer, P. (2007). Experimental Techniques. In Luminescence: From Theory to Applications, Ronda C. (Ed.), pp. 219–250. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
Wagner, B. (2009). The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 14, 210237.Google Scholar
Wang, L., Bim Júnior, O., Lopes, A.C. d. O., Francisconi-dos-Rios, L.F., Maenosono, R.M., D’Alpino, P.H.P., Honório, H.M. & Atta, M.T. (2016). Water interaction and bond strength to dentin of dye-labelled adhesive as a function of the addition of Rhodamine B. J Appl Oral Sci 24, 317324.Google Scholar
Watson, T. (1997). Fact and artefact in confocal microscopy. Adv Dent Res 11, 433441.Google Scholar
Watson, T.F., Azzopardi, A., Etman, M., Cheng, P.C. & Sidhu, S.K. (2000). Confocal and multi-photon microscopy of dental hard tissues and biomaterials. Am J Dent 13, 19D24D.Google Scholar
Watson, T.F. & Boyde, A. (1991). Confocal light microscopic techniques for examining dental operative procedures and dental materials. A status report for the American Journal of Dentistry. Am J Dent 4, 193200.Google Scholar
Watson, T.F. & Wilmot, D.M. (1992). A confocal microscopic evaluation of the interface between Syntac adhesive and tooth tissue. J Dent 20, 302310.Google Scholar
Ye, Q., Spencer, P., Wang, Y. & Misra, A. (2007). Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. J Biomed Mater Res A 80A, 342350.Google Scholar
Zimmermann, T., Rietdorf, J. & Pepperkok, R. (2003). Spectral imaging and its applications in live cell microscopy. FEBS Lett 546, 8792.Google Scholar