Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T22:14:01.488Z Has data issue: false hasContentIssue false

DC Photoelectron Gun Parameters for Ultrafast Electron Microscopy

Published online by Cambridge University Press:  03 July 2009

Joel A. Berger
Affiliation:
Department of Physics (M/C 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7059, USA
John T. Hogan
Affiliation:
Department of Physics (M/C 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7059, USA
Michael J. Greco
Affiliation:
Department of Physics (M/C 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7059, USA
W. Andreas Schroeder*
Affiliation:
Department of Physics (M/C 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7059, USA
Alan W. Nicholls
Affiliation:
Research Resources Center - East (M/C 337), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607-7058, USA
Nigel D. Browning
Affiliation:
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We present a characterization of the performance of an ultrashort laser pulse driven DC photoelectron gun based on the thermionic emission gun design of Togawa et al. [Togawa, K., Shintake, T., Inagaki, T., Onoe, K. & Tanaka, T. (2007). Phys Rev Spec Top-AC10, 020703]. The gun design intrinsically provides adequate optical access and accommodates the generation of ∼1 mm2 electron beams while contributing negligible divergent effects at the anode aperture. Both single-photon (with up to 20,000 electrons/pulse) and two-photon photoemission are observed from Ta and Cu(100) photocathodes driven by the harmonics (∼4 ps pulses at 261 nm and ∼200 fs pulses at 532 nm, respectively) of a high-power femtosecond Yb:KGW laser. The results, including the dependence of the photoemission efficiency on the polarization state of the drive laser radiation, are consistent with expectations. The implications of these observations and other physical limitations for the development of a dynamic transmission electron microscope with sub-1 nm·ps space-time resolution are discussed.

Type
Special Section: Ultrafast Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anandan, S. (2007). Recent improvements and arising challenges in dye-sensitized solar cells. Sol Ener Mater Sol C 91, 843846.CrossRefGoogle Scholar
Armstrong, M.R., Boyden, K., Browning, N.D., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F.V., Kim, J.S., King, W.E., LaGrange, T., Pyke, B.J., Reed, B.W., Shuttlesworth, R.M., Stuart, B.C. & Torralva, B.R. (2007a). Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy 107, 356367.CrossRefGoogle ScholarPubMed
Armstrong, M.R., Reed, B.W., Torralva, B.R. & Browning, N.D. (2007b). Prospects for electron imaging with ultrafast time resolution. Appl Phys Lett 90, 114101.CrossRefGoogle Scholar
Baltuska, A., Udem, Th., Uiberacker, M., Hentschel, M., Goulielmakis, E., Gohle, Ch., Holzwarth, R., Yakovlev, V.S., Scrinzi, A., Hänsch, T.W. & Krausz, F. (2003). Attosecond control of electronic processes by intense light fields. Nature 421, 611615.CrossRefGoogle ScholarPubMed
Berger, J.A., Greco, M.J. & Schroeder, W.A. (2008). High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator. Opt Express 16, 86298640.CrossRefGoogle ScholarPubMed
Birdsall, C.K. (1957). Aperture lens formula corrected for space charge in the electron stream. IRE Trans Elect Dev 4, 132134.CrossRefGoogle Scholar
Borisov, A.B., Davis, J., Song, X., Koshman, Y., Dai, Y., Boyer, K. & Rhodes, C.K. (2003a). Saturated multikilovolt X-ray amplification with Xe clusters: Single-pulse observation of Xe(L) spectral hole burning. J Phys B 36, L285L294.CrossRefGoogle Scholar
Borisov, A.B., Song, X., Frigeni, F., Koshman, Y., Dai, Y., Boyer, K. & Rhodes, C.K. (2003b). Ultrabright multikilovolt coherent tunable X-ray source at λ ∼ 2.71–2.93Å. J Phys B 36, 34333455.CrossRefGoogle Scholar
Bostanjoglo, O., Elschner, R., Mao, Z., Nink, T. & Weingartner, M. (2000). Nanosecond electron microscopes. Ultramicroscopy 81, 141147.CrossRefGoogle ScholarPubMed
Bostanjoglo, O. & Leidtke, R. (1980). Tracing fast phase transitions by electron microscopy. Adv Imag Elect Phys 60, 451455.Google Scholar
Cao, J., Hao, Z., Park, H., Tao, C., Kau, D. & Blaszczyk, L. (2003). Femtosecond electron diffraction for direct measurement of ultrafast atomic motions. Appl Phys Lett 83, 10441046.CrossRefGoogle Scholar
Child, C.D. (1911). Discharge from hot CaO. Phys Rev 32, 492511.Google Scholar
Davisson, C.J. & Calbick, C.J. (1932). Electron lenses. Phys Rev 42, 580. [Single page erratum: http://prola.aps.org/abstract/PR/v42/i42/p580_1]CrossRefGoogle Scholar
Dömer, H. & Bostanjoglo, O. (2003). A high-speed transmission electron microscope. Rev Sci Instrum 74, 43694372.CrossRefGoogle Scholar
Enoch, S., Quidant, R. & Badenes, G. (2004). Optical sensing based on plasmon coupling in nanoparticle arrays. Opt Express 12, 34223427.CrossRefGoogle ScholarPubMed
Goulielmakis, E., Uiberacker, M., Kienberger, R., Baltuska, A., Yakovlev, V., Scrinzi, A., Westerwalbesloh, Th., Kleineberg, U., Heinzmann, U., Drescher, M. & Krausz, F. (2004). Direct measurement of light waves. Science 305, 12671269.CrossRefGoogle ScholarPubMed
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.CrossRefGoogle Scholar
Hastings, J.B., Rudakov, F.M., Dowell, D.H., Schmerge, J.F., Cardoza, J.D., Castro, J.M., Gierman, S.M., Loos, H. & Weber, P.M. (2006). Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl Phys Lett 89, 184109.CrossRefGoogle Scholar
Hebeisen, C.T., Sciaini, G., Harb, M., Ernstorfer, R., Dartigalongue, T., Kruglik, S.G. & Miller, R.J.D. (2008). Grating enhanced ponderomotive scattering for visualization and full characterization of femtosecond electron pulses. Opt Express 16, 33343341.CrossRefGoogle ScholarPubMed
Huang, Z. & Krinsky, S. (2004). Femtosecond X-ray pulses from a frequency-chirped SASE FEL. Nucl Instrum Methods Phys Res A 528, 2833.CrossRefGoogle Scholar
Jensen, K.L., O'Shea, P.G., Feldman, D.W. & Moody, N.A. (2006). Theoretical model of the intrinsic emittance of a photocathode. Appl Phys Lett 89, 224103.CrossRefGoogle Scholar
Kim, J.S., LaGrange, T., Reed, B.W., Campbell, G.H. & Browning, N.D. (2007). Direct observation of the moving reaction front in Ni/Al reactive multilayer foils using dynamic transmission electron microscopy (DTEM). Microsc Microanal 13(2yes), 614CD.CrossRefGoogle Scholar
Kim, J.S., Reed, B.W., Campbell, G.H. & Browning, N.D. (2006). Observation of transient phase formation in reactive multilayer foils using conventional and dynamic transmission electron microscopy (DTEM). Microsc Microanal 12, 148149.CrossRefGoogle Scholar
King, W.E., Campbell, G.H., Frank, A., Reed, B., Schmerge, J.F., Siwick, B.J., Stuart, B.C. & Weber, P.M. (2005). Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97, 111101.CrossRefGoogle Scholar
Kupersztych, J., Monchicourt, P. & Raynaud, M. (2001). Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys Rev Lett 86, 51805183.CrossRefGoogle ScholarPubMed
LaGrange, T., Armstrong, M.R., Boyden, K., Brown, C.G., Campbell, G.H., Colvin, J.D., DeHope, W.J., Frank, A.M., Gibson, D.J., Hartemann, F.V., Kim, J.S., King, W.E., Pyke, B.J., Reed, B.W., Shirk, M.D., Shuttlesworth, R.M., Stuart, B.C., Torralva, B.R. & Browning, N.D. (2006a). Single-shot dynamic transmission electron microscopy. Appl Phys Lett 89, 044105.CrossRefGoogle Scholar
LaGrange, T., Campbell, G.H., Colvin, J.D., Reed, B. & King, W.E. (2006b). Nanosecond time resolved electron diffraction studies of the a → b transformation in pure Ti thin films using the dynamic transmission electron microscope (DTEM). J Mater Sci 41, 44404444.CrossRefGoogle Scholar
LaGrange, T., Campbell, G.H., Turchi, P.E.A. & King, W.E. (2007). Rapid phase transformation kinematics on a nanoscale: Studies of the a → b transformation in pure, nanocrystalline Ti using the nanosecond dynamic transmission electron microscope. Acta Mater 55, 52115224.CrossRefGoogle Scholar
Langmuir, I. (1921). The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes. Phys Rev 21, 419435.CrossRefGoogle Scholar
Lobastov, V.A., Srinivasan, R. & Zewail, A.H. (2005). Four-dimensional ultrafast electron microscopy. Proc Natl Acad Sci 102, 70697073.CrossRefGoogle ScholarPubMed
Michaelson, H.B. (1977). The work function of elements and its periodicity. J Appl Phys 48, 47294733.CrossRefGoogle Scholar
Michalik, A.M. & Sipe, J.E. (2006). Analytical model of electron pulse propagation in ultrafast electron diffraction experiments. J Appl Phys 99, 054908.CrossRefGoogle Scholar
Nestell, J.E. Jr. & Christy, R.W. (1980). Optical conductivity of bcc transition metals: V, Nb, Ta, Cr, Mo, W. Phys Rev B 21, 31733179.CrossRefGoogle Scholar
Portella, M.T., Bigot, J.-Y., Schoenlein, R.W., Cunningham, J.E. & Shank, C.V. (1992). k-space carrier dynamics in GaAs. Appl Phys Lett 60, 21232125.CrossRefGoogle Scholar
Reed, B.W. (2006). Femtosecond electron pulse propagation for ultrafast electron diffraction. J Appl Phys 100, 034916.CrossRefGoogle Scholar
Rose, A. (1948). Advances in Electronics and Electron Physics, Vol. 1, p. 131. New York: Academic Press.Google Scholar
Schroeder, W.A., Nelson, T.R., Borisov, A.B., Longworth, J.W., Boyer, K. & Rhodes, C.K. (2001). An efficient, selective collisional ejection mechanism for inner-shell population inversion in laser-driven plasmas. J Phys B 34, 297319.CrossRefGoogle Scholar
Schroeder, W.A., Omenetto, F.G., Borisov, A.B., Longworth, J.W., McPherson, A., Jordan, C., Boyer, K., Kondo, K. & Rhodes, C.K. (1998). Pump laser wavelength-dependent control of the efficiency of kilovolt X-ray emission from atomic clusters. J Phys B 31, 50315051.CrossRefGoogle Scholar
Serin, N., Serin, T., Horzum, Ş. & Çelik, Y. (2005). Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semicond Sci Technol 20, 398401.CrossRefGoogle Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2002). Ultrafast electron optics: Propagation dynamics of femtosecond electron packets. J Appl Phys 92, 16431648.CrossRefGoogle Scholar
Spence, J. & Howells, M. (2002). Synchrotron soft X-ray and field emission sources: A comparison. Ultramicroscopy 93, 213222.CrossRefGoogle ScholarPubMed
Srinivasan, R., Lobastov, V.A., Ruan, C.J. & Zewail, A.H. (2003). Ultrafast electron diffraction (UED). Helv Chim Acta 86, 17611799.CrossRefGoogle Scholar
Togawa, K., Shintake, T., Inagaki, T., Onoe, K. & Tanaka, T. (2007). CeB6 electron gun for low-emittance injector. Phys Rev Spec Topics-AC 10, 020703.Google Scholar
Valfells, A., Feldman, D.W., Virgo, M., O'Shea, P.G. & Lau, Y.Y. (2002). Effects of pulse-length and emitter area on virtual cathode formation in electron guns. Phys Plasmas 9, 23772382.CrossRefGoogle Scholar
van Oudheusden, T., de Jong, E.F., van der Geer, S.B., Op 't Root, W.P.E.M., Luiten, O.J. & Siwick, B.J. (2007). Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J Appl Phys 102, 093501.CrossRefGoogle Scholar
Veisz, L., Kurkin, G., Chernov, K., Tarnetsky, V., Apolonski, A., Krausz, F. & Fill, E. (2007). Hybrid dc-ac electron gun for fs-electron pulse generation. New J Phys 9, 451468.CrossRefGoogle Scholar
Weaver, J.H., Lynch, D.W. & Olson, C.G. (1974). Optical properties of V, Ta, and Mo from 0.1 to 35 eV. Phys Rev B 10, 501516.CrossRefGoogle Scholar
Wellershoff, S.-S., Hohlfeld, J., Güdde, J. & Matthias, E. (1999). The role of electron-phonon coupling in femtosecond laser damage of metals. Appl Phys B 69, S99S107.Google Scholar
Williamson, J.C., Cao, J., Ihee, H., Frey, H. & Zewail, A.H. (1997). Clocking transient chemical changes by ultrafast electron diffraction. Nature 386, 159162.CrossRefGoogle Scholar
Zawadzka, J., Jaroszynski, D.A., Carey, J.J. & Wynne, K. (2001). Evanescent-wave acceleration of ultrashort electron pulses. Appl Phys Lett 79, 21302132.CrossRefGoogle Scholar