Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T06:13:02.184Z Has data issue: false hasContentIssue false

Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy

Published online by Cambridge University Press:  21 December 2016

Wei Guo*
Affiliation:
Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
Brian T. Sneed
Affiliation:
Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
Lin Zhou
Affiliation:
Ames Laboratory, Division of Materials Science and Engineering, Ames, IA 50011, USA
Wei Tang
Affiliation:
Ames Laboratory, Division of Materials Science and Engineering, Ames, IA 50011, USA
Matthew J. Kramer
Affiliation:
Ames Laboratory, Division of Materials Science and Engineering, Ames, IA 50011, USA
David A. Cullen
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
Jonathan D. Poplawsky*
Affiliation:
Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
*
*Corresponding authors. [email protected]; [email protected]
*Corresponding authors. [email protected]; [email protected]
Get access

Abstract

Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology and volume fractions of Fe–Co-rich and Νi–Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2–4 nm Fe-rich α1 phases that are nucleated in the Ni-rich α2 matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The US Government is the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

References

Aoyama, K., Takagi, T., Hirase, A. & Miyazawa, A. (2008). STEM tomography for thick biological specimens. Ultramicroscopy 109(1), 7080.Google Scholar
Arslan, I., Marquis, E.A., Homer, M., Hekmaty, M.A. & Bartelt, N.C. (2008). Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108(12), 15791585.CrossRefGoogle ScholarPubMed
Burnett, T.L., McDonald, S.A., Gholinia, A., Geurts, R., Janus, M., Slater, T., Haigh, S.J., Ornek, C., Almuaili, F., Engelberg, D.L., Thompson, G.E. & Withers, P.J (2014). Correlative tomography. Sci Rep 4, 4711 .Google Scholar
Chu, W.G., Fei, W.D., Li, X.H., Yang, D.Z. & Wang, J.L. (2000). Evolution of Fe-Co rich particles in alnico 8 alloy thermomagnetically treated at 800 degrees C. Mater Sci Technol 16(9), 10231028.Google Scholar
Doube, M., Klosowski, M.M., Arganda-Carreras, I., Cordelieres, F.P., Dougherty, R.P., Jackson, J.S., Schmid, B., Hutchinson, J.R. & Shefelbine, S.J. (2010). BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47(6), 10761079.CrossRefGoogle ScholarPubMed
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom probe crystallography. Mater Today 15(9), 378386.Google Scholar
Goris, B., De Backer, A., Van Aert, S., Gomez-Grana, S., Liz-Marzan, L.M., Van Tendeloo, G. & Bals, S. (2013). Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals. Nano Lett 13(9), 42364241.Google Scholar
Goris, B., Polavarapu, L., Bals, S., Van Tendeloo, G. & Liz-Marzan, L.M. (2014). Monitoring galvanic replacement through three-dimensional morphological and chemical mapping. Nano Lett 14(6), 32203226.CrossRefGoogle ScholarPubMed
Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Haberfehlner, G., Cooper, D., Bertin, F., Barraud, S., Audoit, G., Arnoldi, L., Cadel, E., Chabli, A. & Vurpillot, F. (2014). 3D analysis of advanced nano-devices using electron and atom probe tomography. Ultramicroscopy 136, 185192.CrossRefGoogle ScholarPubMed
Guo, W., Meng, L., Wang, H.C., Yan, G.C. & Mao, W.M. (2016). Early-stage nucleation of manganese sulfide particle and its processing evolution in Fe-3wt.%Si alloys. Front Mater Sci 10(1), 6672.Google Scholar
Haberfehlner, G., Bayle-Guillemaud, P., Audoit, G., Lafond, D., Morel, P.H., Jousseaume, V., Ernst, T. & Bleuet, P. (2012). Four-dimensional spectral low-loss energy-filtered transmission electron tomography of silicon nanowire-based capacitors. Appl Phys Lett 101(6), 063108.Google Scholar
Haberfehlner, G., Orthacker, A., Albu, M., Li, J.H. & Kothleitner, G. (2014). Nanoscale voxel spectroscopy by simultaneous EELS and EDS tomography. Nanoscale 6(23), 1456314569.Google Scholar
Haberfehlner, G., Thaler, P., Knez, D., Volk, A., Hofer, F., Ernst, W.E. & Kothleitner, G. (2015). Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography. Nat Commun 6, 8779.Google Scholar
Herbig, M., Choi, P. & Raabe, D. (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153, 3239.Google Scholar
Horiuchi, S., Hanada, T., Ebisawa, M., Matsuda, Y., Kobayashi, M. & Takahara, A. (2009). Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers. ACS Nano 3(5), 12971304.Google Scholar
Kim, D.H., Kim, W.T., Park, E.S., Mattern, N. & Eckert, J. (2013). Phase separation in metallic glasses. Prog Mater Sci 58(8), 11031172.CrossRefGoogle Scholar
Kubel, C., Voigt, A., Schoenmakers, R., Otten, M., Su, D., Lee, T.C., Carlsson, A. & Bradley, J. (2005). Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc Microanal 11(5), 378400.CrossRefGoogle ScholarPubMed
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P., Kelly, T.F. & Humphreys, C.J. (2013). Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer.Google Scholar
Lu, P., Zhou, L., Kramer, M.J. & Smith, D.J. (2014). Atomic-scale chemical imaging and quantification of metallic alloy structures by energy-dispersive X-ray spectroscopy. Sci Rep 4, 3945.Google ScholarPubMed
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8(4), 271280.Google Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford, U.K.: Clarendon Press.Google Scholar
Miller, M.K. & Russell, K.F. (2007). Performance of a local electrode atom probe. Surf Interface Anal 39(2–3), 262267.Google Scholar
Miyazaki, T. & Jin, H. (2012). The Physics of Ferromagnetism. Berlin, Germanu: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Poplawsky, J.D., Li, C., Paudel, N.R., Guo, W., Yan, Y. & Pennycook, S.J. (2016). Nanoscale doping profiles within CdTe grain boundaries and at the CdS/CdTe interface revealed by atom probe tomography and STEM EBIC. Solar Energy Mater Solar Cells 150, 95101.CrossRefGoogle Scholar
Pradeep, K.G., Herzer, G. & Raabe, D. (2015). Atomic scale study of CU clustering and pseudo-homogeneous Fe-Si nanocrystallization in soft magnetic FeSiNbB(CU) alloys. Ultramicroscopy 159, 285291.Google Scholar
Schlossmacher, P., Klenov, D.O., Freitag, B. & von Harrach, H.S. (2010). Enhanced detection sensitivity with a new windowless XEDS system for AEM based on silicon drift detector technology. Microsc Today 18, 1420.Google Scholar
Sun, X.Y., Chen, C.L., Yang, L., Lv, L.X., Atroshenko, S., Shao, W.Z., Sun, X.D. & Zhen, L. (2013). Experimental study on modulated structure in alnico alloys under high magnetic field and comparison with phase-field simulation. J Magn Magn Mater 348, 2732.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3), 131139.Google Scholar
Tsai, W.H. (1985). Moment-preserving thresholding — A new approach. Comput Vis Graph Image Process 29(3), 377393.Google Scholar
Venkatakrishnan, S.V., Drummy, L.F., De Graef, M., Simmons, J.P. & Bouman, C.A. (2013 a). Model based iterative reconstruction for bright field electron tomography. Proc SPIE 8657, 112.Google Scholar
Venkatakrishnan, S.V., Drummy, L.F., Jackson, M.A., De Graef, M., Simmons, J. & Bouman, C.A. (2013 b). A model based iterative reconstruction algorithm for high angle annular dark field-scanning transmission electron microscope (HAADF-STEM) tomography. IEEE Trans Image Process 22(11), 45324544.CrossRefGoogle Scholar
Watanabe, M. & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new zeta-factor methods. J Microsc 221, 89109.CrossRefGoogle Scholar
Wei, G., David, A.G., Julie, D.T., Daniel, H., George, A.Y. & Jonathan, D.P. (2016). An atom probe perspective on phase separation and precipitation in duplex stainless steels. Nanotechnology 27(25), 254004.Google Scholar
Xiong, X. & Weyland, M. (2014). Microstructural characterization of an Al-Li-Mg-Cu alloy by correlative electron tomography and atom probe tomography. Microsc Microanal 20(4), 10221028.Google Scholar
Xu, W., Dycus, J.H., Sang, X. & LeBeau, J.M. (2016). A numerical model for multiple detector energy dispersive X-ray spectroscopy in the transmission electron microscope. Ultramicroscopy 164, 5161.Google Scholar
Yao, L., Moody, M.P., Cairney, J.M., Haley, D., Ceguerra, A.V., Zhu, C. & Ringer, S.P. (2011). Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. Ultramicroscopy 111(6), 458463.CrossRefGoogle ScholarPubMed
Yao, M.J., Dey, P., Seol, J.B., Choi, P., Herbig, M., Marceau, R.K.W., Hickel, T., Neugebauer, J. & Raabe, D. (2016). Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of kappa-carbides in an austenitic Fe-Mn-Al-C low density steel. Acta Mater 106, 229238.Google Scholar
Zhang, J.M., Wang, D.D. & Xu, K.W. (2006). Calculation of the surface energy of BCC transition metals by using the second nearest-neighbor modified embedded atom method. Appl Surf Sci 252(23), 82178222.Google Scholar
Zhou, L., Miller, M.K., Dillon, H., Palasyuk, A., Constantinides, S., McCallum, R.W., Anderson, I.E. & Kramer, M.J. (2014 a). Role of the applied magnetic field on the microstructural evolution in alnico 8 alloys. Metall Mater Trans E 1(1), 2735.Google Scholar
Zhou, L., Miller, M.K., Lu, P., Ke, L., Skomski, R., Dillon, H., Xing, Q., Palasyuk, A., McCartney, M.R., Smith, D.J., Constantinides, S., McCallum, R.W., Anderson, I.E., Antropov, V. & Kramer, M.J. (2014 b). Architecture and magnetism of alnico. Acta Mater 74, 224233.Google Scholar
Supplementary material: File

Guo supplementary material

Figures S1-S3 and Tables S1-S2

Download Guo supplementary material(File)
File 274.2 KB