Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T12:14:56.390Z Has data issue: false hasContentIssue false

Convenient Preparation of High-Quality Specimens for Annealing Experiments in the Transmission Electron Microscope

Published online by Cambridge University Press:  05 November 2014

Martial Duchamp*
Affiliation:
Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute, Forschungszentrum Jülich, 52428 Jülich, Germany
Qiang Xu
Affiliation:
DENSsolutions, 2628XH Delft, The Netherlands Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
Rafal E Dunin-Borkowski
Affiliation:
Ernst Ruska-Center for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute, Forschungszentrum Jülich, 52428 Jülich, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

A procedure based on focused ion beam milling and in situ lift-out is introduced for the preparation of high-quality specimens for in situ annealing experiments in the transmission electron microscope. The procedure allows an electron-transparent lamella to be cleaned directly on a heating chip using a low ion energy and back-side milling in order to minimize redeposition and damage. The approach is illustrated through the preparation of an Al–Mn–Fe complex metallic alloy specimen.

Type
Technology and Software Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balanetshyy, S., Meisterernst, G. & Feuerbacher, M. (2011). The Al-rich region of the Al-Mn-Ni alloy sytem. Part I: Ternary phases at the 750-950°C. J Alloys Compd 209, 37873794.CrossRefGoogle Scholar
Dunin-Borkowski, R.E., Newcomb, S.B., Kasama, T., McCartney, M.R., Weyland, M. & Midgley, P.A. (2005). Conventional and back-side focused ion beam milling for off-axis electron holography of electrostatic potentials in transistors. Ultramicroscopy 103, 6781.CrossRefGoogle ScholarPubMed
FEI Company, xT (2003). Nova NanoLab User’s Manual (1st ed.). Eindhoven: FEI Company, xT. pp. 5–57.Google Scholar
Field, R.D. & Papin, P.A. (2004). Location specific in situ TEM straining specimens made using FIB. Ultramicroscopy 102, 2326.Google Scholar
Figuerola, A., van Huis, M., Zanella, M., Genovese, A., Marras, S., Falqui, A., Zandbergen, H.W., Cingolani, R. & Manna, L. (2010). Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. Nano Lett 10, 30283036.CrossRefGoogle ScholarPubMed
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B. & Stevie, F.A. (1997). Focused ion beam milling and micromanipulation lift-out for site specific cross-section TEM specimen preparation. Mater Res Soc Symp Proc 480, 1927.Google Scholar
Harlow, W., Ghassemi, H. & Taheri, M.L. (2014). In-situ TEM study of the corrosion behavior of Zry-4. Microsc Microanal 20(Suppl 3), 16021603.Google Scholar
Heggen, M., Houben, L. & Feuerbacher, M. (2010). Plastic deformation mechanism in complex solids. Nat Mater 9, 332336.CrossRefGoogle ScholarPubMed
Heggen, M., Houben, L. & Feuerbacher, M. (2011). Metadislocations in complex metallic alloys T-Al-Mn- (Pd, Fe). Acta Mater 59, 44584466.Google Scholar
Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Van Herle, J., Hessler-Wyser, A. & Dunin-Borkowski, R.E. (2010). In situ redox cycle of a nickel-YSZ fuel cell anode in an environmental transmission electron microscope. Acta Mater 58, 45784589.CrossRefGoogle Scholar
Kempshall, B.W., Schwarzx, B.W. & Giannuzzi, L. (2002). In situ FIB lift-out for site specific TEM specimen preparation of grain boundaries and interfaces. Int Congress Electron Microsc Durban South Africa Proc 1, 249.Google Scholar
Langford, R.M., Huang, Y.Z., Lozano-Perez, S., Titchmarsh, J.M. & Petford-long, A.K. (2001). Preparation of site specific transmission electron microscopy plan-view specimens using a focused ion beam system. J Vacuum Sci Technol B 19, 755758.CrossRefGoogle Scholar
Langford, R.M. & Petford-Long, A.K. (2000). Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J Vacuum Sci Technol A 19, 21862193.Google Scholar
Legros, M., Dehm, G., Keller-Flaig, R.M., Arzt, E., Hemker, K.J. & Suresh, S. (2001). Dynamic observation of Al thin films plastically strained in a TEM. Mater Sci Eng A 463, 309310.Google Scholar
Longworth, H.P. & Thompson, C.V. (1991). Abnormal grain growth in aluminum alloy thin films. J Appl Phys 69, 39293940.CrossRefGoogle Scholar
Orloff, J., Utlaut, M. & Swanson, L. (2003). High Resolution Focused Ion Beams: FIB and its Applications, 1st ed. New York, NY: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Radulescu, F., McCarthy, J.M. & Stach, E. (2000). In situ annealing transmission electron microscopy study of Pd/Ge/Pd/GaAs interfacial reactions. Mater Res Soc Symp Proc 589, 179184.Google Scholar
Ramasse, Q., Anapolsky, A., Lazik, C., Jin, M., Armstrong, K. & Wang, D. (2009). Atomic scale observation and characterization of redox-induced interfacial layers in commercial Si thin film photovoltaics. J Appl Phys 105, 033716.Google Scholar
Rogers, M., Kothleitner, G., Berendes, A., Bock, W. & Kolbesen, B.O. (2005). Focused ion beam preparation and EFTEM/EELS studies of vanadium nitride thin films. Pract Metallography 42, 172187.CrossRefGoogle Scholar
Schaffer, M., Schaffer, B. & Ramasse, Q. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 6271.CrossRefGoogle ScholarPubMed
van Huis, M.A., Kunneman, L.T., Overgaag, K., Xu, Q., Pandraud, G., Zandbergen, H.W. & Vanmaekelbergh, D.L. (2008). Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett 8, 39593963.Google Scholar
van Huis, M.A., Young, N.P., Pandraud, G., Creemer, J.F., Vanmaekelbergh, D., Kirkland, A.I. & Zandbergen, H.W. (2009). Atomic imaging of phase transitions and morphology transformations in nanocrystals Adv Mater 21, 49924995.CrossRefGoogle ScholarPubMed
Venkatraman, R., Bravman, J.C., Nix, W.D., Davies, P.W., Flinn, P.A. & Fraser, D.B. (1990). Mechanical properties and microstructural characterization of AI-0.5%Cu thin films. J Electron Mater 19, 12311237.CrossRefGoogle Scholar
Xu, Q., Wu, M.Y., Schneider, G.F., Houben, L., Malladi, S.K., Dekker, C., Yucelen, E., Dunin-Borkowski, R.E. & Zandbergen, H.W. (2013). Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. ACS Nano 7, 15661572.CrossRefGoogle ScholarPubMed
Zheng, P., Ruault, M.O., Denanot, M.F., Descouts, B. & Krauz, P. (1991). In situ thermal annealing of InP amorphous layer induced by Si+ implantation. J Appl Phys 69, 197202.Google Scholar