Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T08:39:06.617Z Has data issue: false hasContentIssue false

Contribution of a New Generation Field-Emission Scanning Electron Microscope in the Understanding of a 2099 Al-Li Alloy

Published online by Cambridge University Press:  29 October 2012

Nicolas Brodusch*
Affiliation:
Mining and Materials Department, McGill University, Wong Building, 3610 University Street, H3A 0C5 Montréal, Québec, Canada
Michel Trudeau
Affiliation:
Institut de Recherche d'Hydro-Québec, 1806 Boulevard Lionel-Boulet, J3X 1S1 Varennes, Québec, Canada
Pierre Michaud
Affiliation:
Mining and Materials Department, McGill University, Wong Building, 3610 University Street, H3A 0C5 Montréal, Québec, Canada
Lisa Rodrigue
Affiliation:
Institut de Recherche d'Hydro-Québec, 1806 Boulevard Lionel-Boulet, J3X 1S1 Varennes, Québec, Canada
Julien Boselli
Affiliation:
ALCOA Inc., 100 Technical Drive, ALCOA Centre, PA 15069, USA
Raynald Gauvin
Affiliation:
Mining and Materials Department, McGill University, Wong Building, 3610 University Street, H3A 0C5 Montréal, Québec, Canada
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Aluminum-lithium alloys are widespread in the aerospace industry. The new 2099 and 2199 alloys provide improved properties, but their microstructure and texture are not well known. This article describes how state-of-the-art field-emission scanning electron microscopy (FE-SEM) can contribute to the characterization of the 2099 aluminum-lithium alloy and metallic alloys in general. Investigations were carried out on bulk and thinned samples. Backscattered electron imaging at 3 kV and scanning transmission electron microscope imaging at 30 kV along with highly efficient microanalysis permitted correlation of experimental and expected structures. Although our results confirm previous studies, this work points out possible substitutions of Mg and Zn with Li, Al, and Cu in the T1 precipitates. Zinc and magnesium are also present in “rice grain”–shaped precipitates at the grain boundaries. The versatility of the FE-SEM is highlighted as it provides information in the macro- and microscales with relevant details. Its ability to probe the distribution of precipitates from nano- to microsizes throughout the matrix makes FE-SEM an essential technique for the characterization of metallic alloys.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benoit, D., Brault, G., Bresse, J., Grillon, F., Maurice, F., Pouchou, J. & Ruste, J. (1989). Processus physiques et leur simulation par la méthode de Monte-Carlo. In Microanalyse par sonde électronique: Aspects quantitatifs, Maurice, F. (Ed.), pp. A1A38. Paris, France: ANRT.Google Scholar
Canovic, S., Jonsson, T. & Halvarsson, M. (2008). Grain contrast imaging in FIB and SEM. J Phys Conf Ser 126(1), 012054-1–4.Google Scholar
Charlot, F. & Jonnard, P. (2008). Les intéractions électrons—Matière. In Microscopie Électronique à Balayage et Microanalyses, Brisset, F. (Ed.), pp. 1362. Les Ulis Cedex A, France: EDP Sciences.Google Scholar
Crewe, A.V., Langmore, J.P. & Isaacson, M.S. (1975). Resolution and contrast in the STEM. In Physical Aspects of Electron Microscopy and Microbeam Analysis, Siegel, B.M. & Beaman, D.R. (Eds.), pp. 4762. New York: John Wiley & Sons.Google Scholar
Donnadieu, P., Shao, Y., De Geuser, F., Botton, G. A., Lazar, S., Cheynet, M., de Boissieu, M. & Deschamps, A. (2011). Atomic structure of T1 precipitates in Al-Li-Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering. Acta Mater 59(2), 462472.Google Scholar
Erdman, N., Kikuchi, N., Laudate, A. & Robertson, V. (2009). Multispectral imaging in a FEG-SEM. Adv Mater Proc 167(9), 2831.Google Scholar
Gauvin, R., Hovington, P. & Drouin, D. (1995). Quantification of sperical inclusions in the scanning electron microscope using Monte Carlo simulations. Scanning 17, 202219.Google Scholar
Gauvin, R. & Michaud, P. (2009). MC X-Ray, A new Monte Carlo program for quantitative X-ray microanalysis of real materials. Microsc Microanal 15, 488489.Google Scholar
Giummarra, C., Rioja, R.J., Bray, G.H., Magnusen, P.E. & Moram, J.P. (2007a). Al-Li alloys: Development of corrosion resistant, high toughness aluminium-lithium aerospace alloys. Proc ICCA 11(1), 176188.Google Scholar
Giummarra, C., Thomas, B. & Rioja, R.J. (2007b). New aluminum-lithium alloys for aerospace applications. In Proceedings of the Third International Conference on Light Metals Technology, September 24–26, 2007, Saint-Sauveur, Canada, Sadayappan, K. & Sahoo, M. (Eds.). Ottawa: CANMET.Google Scholar
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (2003a). Generation of X-rays in the SEM specimen. In Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed., Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (Ed.), pp. 271296. New York, Boston, Dordrecht, London, Moscow: Klewer Academic/Plenum Publishers.Google Scholar
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (2003b). Electron beam-specimen interactions. In Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed., Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (Ed.), pp. 6198. New York, Boston, Dordrecht, London, Moscow: Klewer Academic/Plenum Publishers.Google Scholar
Horny, P., Lifshin, E., Campbell, H. & Gauvin, R. (2010). Development of a new quantitative X-ray microanalysis method for electron microscopy. Microsc Microanal 16(6), 821830.Google Scholar
Joy, D.C., Ko, Y.U. & Hwu, J. (2000). Metrics of resolution and performance for CD-SEMs. Proc SPIE 3998, 108.Google Scholar
Kikuchi, N., Shinzawa, T., Negishi, T., Ogura, K. & Nielsen, C.H. (2007). Observation of crystalline contrast with using low energy electrons in SEM. Microsc Microanal 13(Suppl 2), 972973.Google Scholar
Kim, N.J. & Lee, E.W. (1993). Effect of T1 precipitate on the anisotropy of Al-Li alloy 2090. Acta Metall Mater 41(3), 941948.CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V. & Pennycook, T.J. (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574.Google Scholar
Leapman, R. (2004). EELS quantitative analysis. In Transmission Electron Energy Loss Spectroscopy in Materials Science and the EELS ATLAS, 2nd ed., Ahn, C.C. (Ed.), pp. 4996. Weinheim, Germany: Wiley-VCH.Google Scholar
Lich, B., Novak, L., Bosch, E., Stokes, D.J., Phifer, D.W. & Tuma, L. (2010). Angular backscattered filtering with an immersion lens SEM. Microsc Microanal 16(Suppl 2), 402403.Google Scholar
Liu, J. (2000). Contrast of highly dispersed metal nanoparticles in high-resolution secondary electron and backscattered electron images of supported metal catalysts. Microsc Microanal 6, 388399.Google Scholar
Ma, Y., Zhou, X., Thompson, G.E., Hashimoto, T., Thomson, P. & Fowles, M. (2011). Distribution of intermetallics in an AA 2099-T8 aluminium alloy extrusion. Mater Chem Phys 126, 4653.Google Scholar
Merli, P.G., Corticelli, F. & Morandi, V. (2002). Images of dopant profiles in low-energy scanning transmission electron microscopy. Appl Phys Lett 81(24), 45354537.Google Scholar
Merli, P.G. & Morandi, V. (2005). Low-energy STEM of multilayers and dopant profiles. Microsc Microanal 11, 97104.Google Scholar
Morandi, V. & Merli, P.G. (2007). Scanning electron microscopy of thinned specimens: From multilayers to biological samples. Appl Phys Lett 90, 163113-1163113-3.Google Scholar
Morandi, V., Merli, P.G. & Ferroni, M. (2006). Dopant regions imaging in scanning electron microscopy. J Appl Phys 99, 043512-1–7.Google Scholar
Munoz-Morris, M.A. & Morris, D.G. (2010). Severe platic deformation processing of Al-Cu-Li alloy for enhancing strength while maintaining ductibility. Scripta Mater 63, 304307.Google Scholar
Nakagawa, M., Dunne, R., Koike, H., Sato, M., Pérez-Camacho, J.J. & Kennedy, B.J. (2002). Low voltage FE-STEM for characterization of state-of-the-art silicon SRAM. J Electron Microsc 51(1), 5357.Google Scholar
Newbury, D.E. (1998). Trace element detection at nanometer scale spatial resolution. J Electron Microsc 47(5), 407418.Google Scholar
Newbury, D.E. (2006). The new X-ray mapping: X-ray spectrum imaging above 100 kHz output count rate with the silicon drift detector. Micros Microanal 12, 2635.Google Scholar
Newbury, D.E. (2009). The revolution in energy dispersive X-ray spectrometry: Spectrum imaging at output count rates above 1 MHz with the silicon drift detector on a scanning electron microscope. Spectroscopy 24(7), 3243.Google Scholar
Pennycook, S.J. (1989). Z-contrast STEM for materials science. Ultramicroscopy 30, 5869.CrossRefGoogle Scholar
Pouchou, J.-L. (2004). Introduction à l'analyse EBSD: Principes Généraux et Mise en Œuvre dans un MEB. In L'analyse EBSD—Principes et applications. Pouchou, J.-L. (Ed.), pp. 124. Les Ulis Cedex A, France: EDP Sciences—GN-MEBA.Google Scholar
Probst, C., Gauvin, R. & Drew, R.A. (2007). Imaging of carbon nanotubes with tin-palladium particules using STEM detector in a FE-SEM. Micron 38, 402408.Google Scholar
Reimer, L. (1998). Emission of backscattered and secondary electrons. In Scanning Electron Microscopy, 2nd ed., Reimer, L. (Ed.), pp. 135169. Springer-Verlag.Google Scholar
Richards, R.J., Owen, G.R. & Gwynn, I. (1999). Low voltage backscattered electron imaging (<5 kv) using field emission scanning electron microscopy. Scan Microsc 13(1), 5560.Google Scholar
Rowlands, N., Holland, J. & Bhattiprolu, S. (2009). Large area SDD detectors. Adv Mater Proc 167(5), 4143.Google Scholar
Singh, A.K., Imam, M.A. & Sadananda, K. (1988). Artifacts introduced by ion milling in Al-Li-Cu alloys. J Electron Microsc Techniq 8, 355361.Google Scholar
Steigerwald, M.D., Arnold, R., Bihr, J., Drexel, V., Jaksch, H., Preikszas, D. & Vermeulen, J.P. (2004). New detection system for GEMINI. Microsc Microanal 10, 13721373.Google Scholar
Terauchi, M., Takahashi, H., Handa, N., Murano, T., Koike, M., Kawachi, T., Imazono, T., Koeda, M., Nagano, T., Sasai, H., Oue, Y., Yonezawa, Z. & Kuramoto, S. (2012). Ultrasoft-X-ray emission spectroscopy using a newly designed wavelength-dispersive spectrometer attached to a transmission electron microscope. J Electron Microsc 61(1), 18.Google Scholar
Unocic, K.A., Mills, M.J. & Daehn, G.S. (2010). Effect of gallium focused ion beam milling on preparation of aluminium thin foils. J Microsc 240(3), 227238.Google Scholar
Ushiki, T., Hashizume, H., Itoh, S., Kuboki, K., Saito, S. & Tanaka, K. (1998). Low-voltage backscattered electron imaging of non-coated biological samples in a low-vacuum environment using a variable-pressure scanning electron microscope with a YAG-detector. J Electron Microsc 47(4), 351354.Google Scholar
von Harrach, H.S., Klenov, D.O., Freitag, B., Schlossmacher, P., Collins, P.C. & Fraser, H.L. (2010). Comparison of the detection limits of EDS and EELS in S/TEM. Microsc Microanal 16, 13121313.Google Scholar
Wangyao, P., Zrnik, J., Kasl, J., Novy, Z. & Komolwit, P. (2003). The application of electron channelling contrast mode to study the recrystallization process in nickel alloy after different thermomechanical processing conditions. J Metals Mater Min 12(2), 5157.Google Scholar
Washeed, A. & Lorimer, G.W. (1997). Dispersoids in Al-Li AA8090 series alloys. J Mater Sci 32, 33413347.Google Scholar
Wilkinson, A.J. & Hirsch, P.B. (1997). Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28(4), 279308.Google Scholar
Woo, K.D. & Kim, S.W. (2002). The mechanical properties and precipitation behavior of an Al-Cu-Li-(In,Be) alloy. J Mater Sci 37, 411416.Google Scholar