Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T23:06:12.792Z Has data issue: false hasContentIssue false

Coincident Electron Channeling and Cathodoluminescence Studies of Threading Dislocations in GaN

Published online by Cambridge University Press:  12 November 2013

Gunasekar Naresh-Kumar*
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK
Jochen Bruckbauer
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK
Paul R. Edwards
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK
Simon Kraeusel
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK
Ben Hourahine
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK
Robert W. Martin
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK
Menno J. Kappers
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
Michelle A. Moram
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK
Stephen Lovelock
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
Rachel A. Oliver
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
Colin J. Humphreys
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, UK
Carol Trager-Cowan
Affiliation:
Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, UK
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

We combine two scanning electron microscopy techniques to investigate the influence of dislocations on the light emission from nitride semiconductors. Combining electron channeling contrast imaging and cathodoluminescence imaging enables both the structural and luminescence properties of a sample to be investigated without structural damage to the sample. The electron channeling contrast image is very sensitive to distortions of the crystal lattice, resulting in individual threading dislocations appearing as spots with black–white contrast. Dislocations giving rise to nonradiative recombination are observed as black spots in the cathodoluminescence image. Comparison of the images from exactly the same micron-scale region of a sample demonstrates a one-to-one correlation between the presence of single threading dislocations and resolved dark spots in the cathodoluminescence image. In addition, we have also obtained an atomic force microscopy image from the same region of the sample, which confirms that both pure edge dislocations and those with a screw component (i.e., screw and mixed dislocations) act as nonradiative recombination centers for the Si-doped c-plane GaN thin film investigated.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, M., Weyher, J.L., Lucznik, B., Grzegory, I. & Porowski, S. (2008). Nonradiative recombination at threading dislocations in n-type GaN: Studied by cathodoluminescence and defect selective etching. Appl Phys Lett 92, 231909-1231909-3.Google Scholar
Amano, H., Miyazaki, A., Iida, K., Kawashima, T., Iwaya, M., Kamiyama, S., Akasaki, I., Liu, R., Bell, A., Ponce, F.A., Sahonta, S. & Cherns, D. (2004). Defect and stress control of AlGaN for fabrication of high performance UV light emitters. Physica Status Solidi A 201, 26792685.Google Scholar
Bakshi, S.D., Sumner, J., Kappers, M. & Oliver, R. (2009). The influence of coalescence time on unintentional doping in GaN/sapphire. J Cryst Growth 311, 232237.CrossRefGoogle Scholar
Ban, K., Yamamoto, J., Takeda, K., Ide, K., Iwaya, M., Takeuchi, T., Kamiyama, S., Akasaki, I. & Amano, H. (2011). Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl Phys Express 4, 052101-1052101-3.Google Scholar
Bruckbauer, J., Edwards, P.R., Wang, T. & Martin, R.W. (2011). High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures. Appl Phys Lett 98, 141908-1141908-3.Google Scholar
Brunner, F., Mogilatenko, A., Knauer, A., Weyers, M. & Zettler, J.T. (2012). Analysis of doping induced wafer bow during GaN:Si growth on sapphire. J Appl Phys 112, 033503-1033503-5.Google Scholar
Cao, X.A., LeBoeuf, S.F., d'Evelyn, M.P., Arthur, S.D., Kretchmer, J., Yan, C.H. & Yang, Z.H. (2004). Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates. Appl Phys Lett 84, 43134315.Google Scholar
Dai, Q., Schubert, M.F., Kim, M.H., Kim, J.K., Schubert, E.F., Koleske, D.D., Crawford, M.H., Lee, S.R., Fischer, A.J., Thaler, G. & Banas, M.A. (2009). Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities. Appl Phys Lett 94, 111109-1111109-3.Google Scholar
Drouin, D., Couture, A.R., Joly, D., Tastei, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92101.Google Scholar
Edwards, P.R., Jagadamma, L.K., Bruckbauer, J., Liu, C., Shields, P., Allsopp, D., Wang, T. & Martin, R.W. (2012). High-resolution cathodoluminescence hyperspectral imaging of nitride nanostructures. Microsc Microanal 18, 12121219.CrossRefGoogle ScholarPubMed
Edwards, P.R. & Martin, R.W. (2011). Cathodoluminescence nano-characterization of semiconductors. Semicond Sci Technol 26, 064005-1064005-8.Google Scholar
Elsner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elstner, M., Frauenheim, T., Heggie, M.I., Öberg, S. & Briddon, P.R. (1997). Theory of threading edge and screw dislocations in GaN. Phys Rev Lett 79, 36723675.Google Scholar
Harada, Y., Hikosaka, T., Kimura, S., Sugai, M., Nago, H., Tachibana, K., Sugiyama, N. & Nunoue, S. (2012). Effect of dislocation density on efficiency curves in InGaN/GaN multiple quantum well light-emitting diodes. Proc of SPIE 8278, 82780J-182780J-6.Google Scholar
Karpov, S.Y. & Makarov, Y.N. (2002). Dislocation effect on light emission efficiency in gallium nitride. Appl Phys Lett 81, 47214723.Google Scholar
Kneissl, M., Kolbe, T., Chua, C., Kueller, V., Lobo, N., Stellmach, J., Knauer, A., Rodriguez, H., Einfeldt, S., Yang, Z., Johnson, N.M. & Weyers, M. (2011). Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond Sci Technol 26, 014036-1014036-6.Google Scholar
Lester, S.D., Ponce, F.A., Craford, M.G. & Steigerwald, D.A. (1995). High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl Phys Lett 66, 12491251.Google Scholar
Leung, K., Wright, A.F. & Stechel, E.B. (1999). Charge accumulation at a threading edge dislocation in gallium nitride. Appl Phys Lett 74, 24952497.Google Scholar
Lymperakis, L., Neugebauer, J., Albrecht, M., Remmele, T. & Strunk, H.P. (2004). Strain induced deep electronic states around threading dislocations in GaN. Phys Rev Lett 93, 196401-1196401-4.Google Scholar
Martin, R.W., Edwards, P.R., O'Donnell, K.P., Dawson, M.D., Jeon, C.W., Liu, C., Rice, G.R. & Watson, I.M. (2004). Cathodoluminescence spectral mapping of III-nitride structures. Physica Status Solidi A 201, 665672.Google Scholar
Moram, M.A., Gabbai, U.E., Sadler, T.C., Kappers, M.J. & Oliver, R.A. (2010). The use of spatial analysis techniques in defect and nanostructure studies. J Elect Mat 39, 656662.CrossRefGoogle Scholar
Moram, M.A., Oliver, R.A., Kappers, M.J. & Humphreys, C.J. (2009). The spatial distribution of threading dislocations in gallium nitride films. Adv Mater 21, 39413944.Google Scholar
Naresh-Kumar, G., Hourahine, B., Edwards, P.R., Day, A.P., Winkelmann, A., Wilkinson, A.J., Parbrook, P.J., England, G. & Trager-Cowan, C. (2012a). Rapid nondestructive analysis of threading dislocations in wurtzite materials using the scanning electron microscope. Phys Rev Lett 108, 135503-1135503-5.Google Scholar
Naresh-Kumar, G., Hourahine, B., Vilalta-Clemente, A., Ruterana, P., Gamarra, P., Lacam, C., Tordjman, M., Di-Forte-Poisson, M.A., Parbrook, P.J., Day, A.P., England, G. & Trager-Cowan, C. (2012b). Imaging and identifying defects in nitride semiconductor thin films using a scanning electron microscope. Physica Status Solidi A 209, 424426.CrossRefGoogle Scholar
Norman, C.E. (2000). Challenging the spatial resolution limits of CL and EBIC. Solid State Phenom 7879, 1928.Google Scholar
Northrup, J.E. (2001). Screw dislocations in GaN: The Ga-filled core model. Appl Phys Lett 78, 22882290.Google Scholar
Northrup, J.E. (2002). Theory of intrinsic and H-passivated screw dislocations in GaN. Phys Rev B 66, 045204-1045204-5.Google Scholar
Oliver, R.A., Kappers, M.J. & Humphreys, C.J. (2006a). Insights into the origin of threading dislocations in GaN/Al2O3 from atomic force microscopy. Appl Phys Lett 89, 011914-1011914-3.Google Scholar
Oliver, R.A., Kappers, M.J., Sumner, J.S., Datta, R. & Humphreys, C.J. (2006b). Highlighting threading dislocations in MOVPE-grown GaN using an in situ treatment with SiH4 and NH3 . J Cryst Growth 289, 506514.Google Scholar
Parish, C.M. & Russell, P.E. (2007). Scanning cathodoluminescence microscopy. In Advances in Imaging and Electron Physics, Hawkes, P.W. (Ed.), pp. 2115. San Diego, London: Academic Press.Google Scholar
Picard, Y.N., Caldwell, J.D., Twigg, M.E., Eddy, C.R. Jr., Mastro, M.A., Henry, R.L., Holm, R.T., Neudeck, P.G., Trunek, A.J. & Powell, J.A. (2007). Nondestructive analysis of threading dislocations in GaN by electron channeling contrast imaging. Appl Phys Lett 91, 094106-1094106-3.Google Scholar
Ripley, B.D. (1977). Modelling spatial patterns. J Roy Statist Soc Ser B 39, 172212.Google Scholar
Schiavon, D., Binder, M., Peter, M., Galler, B., Drechsel, P. & Scholz, F. (2013). Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes. Physica Status Solidi B 250, 283290.Google Scholar
Trager-Cowan, C., Sweeney, F., Trimby, P.W., Day, A.P., Gholinia, A., Schmidt, N.H., Parbrook, P.J., Wilkinson, A.J. & Watson, I.M. (2007). Electron backscatter diffraction and electron channeling contrast imaging of tilt and dislocations in nitride thin films. Phys Rev B 75, 085301-1085301-8.Google Scholar
Wilkinson, A.J. & Hirsch, P.B. (1997). Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28, 279308.CrossRefGoogle Scholar
Wright, A.F. & Grossner, U. (1998). The effect of doping and growth stoichiometry on the core structure of a threading edge dislocation in GaN. Appl Phys Lett 73, 27512753.Google Scholar
Yacobi, B.G. & Holt, D.B. (1990). Cathodoluminescence Microscopy of Inorganic Solids. New York: Plenum Press.CrossRefGoogle Scholar
Yakimov, E.B. (2012). Investigation of electrical and optical properties in semiconductor structures via SEM techniques with high spatial resolution. J Surf Invest-X-Ray 6, 887889.Google Scholar
Yamamoto, N., Itoh, H., Grillo, V., Chichibu, S.F., Keller, S., Speck, J.S., DenBaars, S.P., Mishra, U.K., Nakamura, S. & Salviati, G. (2003). Cathodoluminescence characterization of dislocations in gallium nitride using a transmission electron microscope. J App Phys 94, 43154319.Google Scholar