No CrossRef data available.
Article contents
Characterization of Sil-ycy Alloy Layers Incorporating Si4c Building Blocks
Published online by Cambridge University Press: 02 July 2020
Extract
Group IV based alloys have received considerable attention in recent years, because of the possibility to tailor the band gap of the material system with respect to that of Si. Significant results have already been achieved with Si-Ge system, where the band gap of pseudomorphic Si1-xGex alloys is smaller than that of Si. Introduction of C onto substitutional lattice sites in Si has been proposed as a possible alternate method for tailoring the electronic properties of Si. Carbon incorporation into Si substitutionally could result in alloys whose band gap would be a function of carbon concentration and lie between the values for silicon (E =1.1 eV) and β-SiC (Eg = 2.3 eV). However, due to the low-equilibrium solubility limit of C in Si, 3.5x1017cm−3 at the eutectic temperature, highly supersaturated and metastable layers are essential to significantly alter strain and electrical properties of the alloys.
In our present study, we have synthesized and characterized Si1-yCy (0.04 < y < 0.20) films grown on (001) Si substrates by ultra-high vacuum chemical vapor deposition at 625°C.
- Type
- Recent Developments in Microscopy for Studying Electronic and Magnetic Materials
- Information
- Microscopy and Microanalysis , Volume 3 , Issue S2: Proceedings: Microscopy & Microanalysis '97, Microscopy Society of America 55th Annual Meeting, Microbeam Analysis Society 31st Annual Meeting, Histochemical Society 48th Annual Meeting, Cleveland, Ohio, August 10-14, 1997 , August 1997 , pp. 457 - 458
- Copyright
- Copyright © Microscopy Society of America 1997