Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T00:18:26.619Z Has data issue: false hasContentIssue false

Automatic Biological Cell Counting Using a Modified Gradient Hough Transform

Published online by Cambridge University Press:  01 February 2017

Emmanuel Denimal*
Affiliation:
AgroSup Dijon, Université Bourgogne Franche-Comté, PAM UMR A 02.102, F-21000 Dijon, France
Ambroise Marin
Affiliation:
AgroSup Dijon, Université Bourgogne Franche-Comté, PAM UMR A 02.102, F-21000 Dijon, France
Stéphane Guyot
Affiliation:
AgroSup Dijon, Université Bourgogne Franche-Comté, PAM UMR A 02.102, F-21000 Dijon, France
Ludovic Journaux
Affiliation:
AgroSup Dijon, Université Bourgogne Franche-Comté, PAM UMR A 02.102, F-21000 Dijon, France AgrosupDijon, Université Bourgogne Franche-Comté, Le2i FRE2005 F-21000 Dijon, France
Paul Molin
Affiliation:
AgroSup Dijon, Université Bourgogne Franche-Comté, PAM UMR A 02.102, F-21000 Dijon, France
*
*Corresponding author. [email protected]
Get access

Abstract

We present a computational method for pseudo-circular object detection and quantitative characterization in digital images, using the gradient accumulation matrix as a basic tool. This Gradient Accumulation Transform (GAT) was first introduced in 1992 by Kierkegaard and recently used by Kaytanli & Valentine. In the present article, we modify the approach by using the phase coding studied by Cicconet, and by adding a “local contributor list” (LCL) as well as a “used contributor matrix” (UCM), which allow for accurate peak detection and exploitation. These changes help make the GAT algorithm a robust and precise method to automatically detect pseudo-circular objects in a microscopic image. We then present an application of the method to cell counting in microbiological images.

Type
Instrumentation and Software
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asimov, I. (1954). The Caves of Steel, A Robot Novel. Garden City, NY: Doubleday.Google Scholar
Bresenham, J.E. (1965). Algorithm for computer control of a digital plotter. IBM Syst J 4, 2530.Google Scholar
Cai, Z., Chattopadhyay, N., Liu, W.J., Chan, C., Pignol, J.-P. & Reilly, R.M. (2011). Optimized digital counting colonies of clonogenic assays using ImageJ software and customized macros: Comparison with manual counting. Int J Radiat Biol 87, 11351146.Google Scholar
Cicconet, M., Geiger, D. & Werman, M. (2015). Complex-valued hough transforms for circles. In 2015 IEEE International Conference on Image Processing (ICIP), IEEE , pp. 2801–2804.Google Scholar
Comaniciu, D. & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24, 603619.Google Scholar
Davies, E.R. (2004). Machine Vision: Theory, Algorithms, Practicalities. San Francisco, CA: Morgan Kaufmann Publishers.Google Scholar
Denimal, E., Marin, A., Guyot, S., Journaux, L. & Molin, P. (2015). Reliable Detection and Smart Deletion of Malassez Counting Chamber Grid in Microscopic White Light Images for Microbiological Applications. Microsc Microanal 21, 886892.CrossRefGoogle ScholarPubMed
Kaytanli, B. & Valentine, M.T. (2013). Evolute‐based Hough transform method for characterization of ellipsoids. J Microsc 249, 159164.CrossRefGoogle ScholarPubMed
Kierkegaard, P. (1992). A method for detection of circular arcs based on the Hough transform. Machine Vision and Applications 5, 249263.Google Scholar
Kumagai, S. & Hotta, K. (2012). Counting and radius estimation of lipid droplet in intracellular images. In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, pp. 67–71.Google Scholar
Lehmussola, A., Selinummi, J., Ruusuvuori, P., Niemisto, A. & Yli-Harja, O. (2006). Simulating fluorescent microscope images of cell populations. In IEEE-EMBS 2005. 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE , pp. 3153–3156.Google Scholar
Liu, F., He, B. & Bi, B. (2011). Study on algorithms of graphic element recognition for precise vectorization of industrial computed tomographic image. Global J Res Eng 11, 523528.Google Scholar
McGill, R., Tukey, J.W. & Larsen, W.A. (1978). Variations of box plots. Am Stat 32, 1216.Google Scholar
Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica 11, 2327.Google Scholar
Rad, A. A., Faez, K. & Qaragozlou, N. (2003). Fast Circle Detection Using Gradient Pair Vectors. In Dicta, pp. 879–888.Google Scholar
Tao, Z., Junjie, G. & Enxiu, S. (2008). An algorithm for fast circular object detection based on discrete evolute distribution. In ISISE’08 International Symposium on Information Science and Engineering, 2008. IEEE, Vol. 1, pp. 321–324.Google Scholar
Timm, F. & Barth, E. (2011). Accurate, fast, and robust centre localisation for images of semiconductor components. In IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, pp. 787705–787705–10.Google Scholar
Supplementary material: File

Denimal supplementary material

Denimal supplementary material 1

Download Denimal supplementary material(File)
File 12.1 MB