Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:54:58.644Z Has data issue: false hasContentIssue false

Atom-Probe Tomography of Nickel-Based Superalloys with Green or Ultraviolet Lasers: A Comparative Study

Published online by Cambridge University Press:  09 October 2012

Yaron Amouyal
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA
David N. Seidman*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA Northwestern UniversityCenter for Atom Probe Tomography (NUCAPT), Evanston, IL 60208-3108, USA
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Recent developments in the technology of laser-pulsed local-electrode atom-probe (LEAP) tomography include a picosecond ultraviolet (UV) laser system having a 355 nm wavelength and both external and in-vacuum optics. This approach ensures focusing of the laser beam to a smaller spot diameter than has heretofore been obtained using a green (532 nm wavelength) picosecond laser. We compare the mass spectra acquired, using either green or UV laser pulsing, from nickel-based superalloy specimens prepared either electrochemically or by lifting-out from bulk material using ion-beam milling in a dual-beam focused ion beam microscope. The utilization of picosecond UV laser pulsing yields improved mass spectra, which manifests itself in higher signal-to-noise ratios and mass-resolving power (mm) in comparison to green laser pulsing. We employ LEAP tomography to investigate the formation of misoriented defects in nickel-based superalloys and demonstrate that UV laser pulsing yields better accuracy in compositional quantification than does green laser pulsing. Furthermore, we show that using a green laser the quality of mass spectra collected from specimens that were lifted-out by ion milling is usually poorer than for electrochemically-sharpened specimens. Employing UV laser pulsing yields, however, improved mass spectra in comparison to green laser pulsing even for ion-milled microtips.

Type
Techniques and Equipment Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Now at Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel

References

REFERENCES

Amouyal, Y., Mao, Z. & Seidman, D.N. (2010). Effects of tantalum on the partitioning of tungsten between the γ- and γ′-phases in nickel-based superalloys: Linking experimental and computational approaches. Acta Mater 58(18), 58985911.Google Scholar
Amouyal, Y. & Seidman, D.N. (2011a). An atom-probe tomographic study of freckle formation in a nickel-based superalloy. Acta Mater 59, 67296742.Google Scholar
Amouyal, Y. & Seidman, D.N. (2011b). The role of hafnium in the formation of misoriented defects in Ni-based superalloys: An atom probe tomographic study. Acta Mater 59, 33213333.Google Scholar
Bunton, J., Olson, J., Lenz, D., Larson, D.J. & Kelly, T.F. (2011). Optimized laser thermal pulsing of atom probe tomography: LEAP 4000X. Microsc Microanal 16(Suppl S2), 1011.Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13(6), 418427.Google Scholar
Cerezo, A., Clifton, P.H., Galtrey, M.J., Humphreys, C.J., Kelly, T.F., Larson, D.J., Lozano-Perez, S., Marquis, E.A., Oliver, R.A., Shab, G., Thompson, K., Zandbergen, M. & Alvis, R.L. (2007a). Atom probe tomography today. Mater Today 10(12), 3642.Google Scholar
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007b). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107(9), 720725.CrossRefGoogle ScholarPubMed
Cerezo, A., Smith, G.D.W. & Clifton, P.H. (2006). Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl Phys Lett 88(15), 154103. Google Scholar
Chen, Y.M., Ohkubo, T. & Hono, K. (2011). Laser assisted field evaporation of oxides in atom probe analysis. Ultramicroscopy 111(6), 562566.Google Scholar
Chen, Y.M., Ohkubo, T., Kodzuka, M., Morita, K. & Hono, K. (2009). Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scripta Mater 61(7), 693696.Google Scholar
Copley, S.M., Giamei, A.F., Johnson, S.M. & Hornbecker, M.F. (1970). The origin of freckles in unidirectionally solidified castings. Metall Mater Trans 1(August), 21932204.Google Scholar
Durand-Charre, M. (1997). The Microstructure of Superalloys. Amsterdam: Gordon and Breach Science.Google Scholar
Gault, B., De Geuser, F., Bourgeois, L., Gabble, B.M., Ringer, S.P. & Muddle, B.C. (2011). Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al-Cu-Li-Mg-Ag alloy. Ultramicroscopy 111(6), 683689.Google Scholar
Gault, B., La Fontaine, A., Moody, M.P., Ringer, S.P. & Marquis, E.A. (2010). Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy 110, 12151222.Google Scholar
Giamei, A.F. & Kear, B.H. (1970). On the nature of freckles in Ni base superalloys. Metall Trans 1A, 2185. Google Scholar
Giannuzzi, L.A. & Stevie, F.A. (2004). Introduction to Focused Ion Beams. New York: Kluwer Academic Press.Google Scholar
Gilbert, M., Vurpillot, F., Vella, A., Bernas, H. & Deconihout, B. (2007). Some aspects of the silicon behaviour under femtosecond pulsed laser field evaporation. Ultramicroscopy 107(9), 767772.Google Scholar
Hono, K., Ohkubo, T., Chen, Y.M., Kodzuka, M., Oh-Ishi, K., Sepehri-Amin, H., Li, F., Kinno, T., Tomiya, S. & Kanitani, Y. (2011). Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy 111(6), 576583.Google Scholar
Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. (2010). Optical near-field absorption at a metal tip far from plasmonic resonance. Phys Rev B 81(12), 125411. Google Scholar
Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. (2011). Three-dimensional thermal response of a metal subwavelength tip under femtosecond laser illumination. Phys Rev B 84(3), 033405. Google Scholar
Kellogg, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52(8), 53205328.CrossRefGoogle Scholar
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Ann Rev Mater Res 37, 681727.CrossRefGoogle Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 031101. Google Scholar
Krakauer, B.W. & Seidman, D.N. (1992). Systematic procedures for atom-probe field-ion microscopy studies of grain boundary segregation. Rev Sci Instrum 63(9), 4071. Google Scholar
Krug, M.E., Dunand, D.C. & Seidman, D.N. (2011). Effects of Li additions on precipitation-strengthened Al-Sc and Al-Sc-Yb alloys. Acta Mater 59(4), 17001715.Google Scholar
Madison, J., Spowart, J., Rowenhorst, D., Aagesen, L.K., Thornton, K. & Pollock, T.M. (2010). Modeling fluid flow in three-dimensional single crystal dendritic structures. Acta Mater 58(8), 28642875.Google Scholar
Marquis, E.A. & Gault, B. (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104, 084914. Google Scholar
Marquis, E.A. & Hyde, J.M. (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Mater Sci Eng R 69(4-5), 3762.Google Scholar
Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K. & Todd, R.I. (2010). Probing the improbable: Imaging C atoms in alumina. Mater Today 13(10), 3436.Google Scholar
Miller, M.K. (2000). Atom Probe Tomography. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13(6), 428436.CrossRefGoogle ScholarPubMed
Moutanabbir, O., Isheim, D., Seidman, D.N., Kawamura, Y. & Itoh, K.M. (2011). Ultraviolet-laser atom-probe tomographic three-dimensional atom-by-atom mapping of isotopically modulated Si nanoscopic layers. Appl Phys Lett 98(1), 013111013113.Google Scholar
Mulholland, M.D. & Seidman, D.N. (forthcoming). Voltage-pulsed and laser-pulsed atom-probe-tomography of a multiphase high-strength low-carbon steel. Microsc Microanal (accepted for publication).Google Scholar
Oberdorfer, C., Stender, P., Reinke, C. & Schmitz, G. (2007). Laser-assisted atom probe tomography of oxide materials. Microsc Microanal 13(5), 342346.Google Scholar
Perepezko, J. H. (2009). The hotter the engine, the better. Science 326(5956), 10681069.CrossRefGoogle ScholarPubMed
Reed, R.C. (2006). The Superalloys: Fundamentals and Applications. New York: Cambridge University Press.Google Scholar
Roper, S.M., Davis, S.H. & Voorhees, P.W. (2008). An analysis of convection in a mushy layer with a deformable permeable interface. J Fluid Mech 596(1), 333352.Google Scholar
Schlesiger, R., Oberdorfer, C., Wurz, R., Greiwe, G., Stender, P., Artmeier, M., Pelka, P., Spaleck, F. & Schmitz, G. (2010). Design of a laser-assisted tomographic atom probe at Münster University. Rev Sci Instrum 81(4), 043703043708.CrossRefGoogle ScholarPubMed
Schreiber, D.K., Choi, Y.-S., Liu, Y., Chiaramonti, A.N., Seidman, D.N. & Petford-Long, A.K. (2011). Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions. J Appl Phys 109(10), 103909103910.Google Scholar
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Ann Rev Mater Res 37, 127158.Google Scholar
Seidman, D.N. & Scanlan, R.M. (1971). Heating of a field ion microscope specimen. Philos Mag 23(186), 14291437.Google Scholar
Seidman, D.N. & Stiller, K. (2009). An atom-probe tomography primer. Mater Res Soc Bull 34(10), 717721.Google Scholar
Seidman, D.N., Sudbrack, C. & Yoon, K. (2006). The use of 3-D atom-probe tomography to study nickel-based superalloys. JOM 58(12), 3439.Google Scholar
Shimizu, Y., Kawamura, Y., Uematsu, M., Tomita, M., Kinno, T., Okada, N., Kato, M., Uchida, H., Takahashi, M., Ito, H., Ishikawa, H., Ohji, Y., Takamizawa, H., Nagai, Y. & Itoh, K.M. (2011). Depth and lateral resolution of laser-assisted atom probe microscopy of silicon revealed by isotopic heterostructures. J Appl Phys 109(3), 036102-036102-3. CrossRefGoogle Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2-3), 131139.Google Scholar
Tin, S. & Pollock, T.M. (2003). Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbide precipitation and Rayleigh numbers. Metall Mater Trans A 34(9), 19531967.Google Scholar
Tin, S. & Pollock, T.M. (2004). Predicting freckle formation in single crystal Ni-base superalloys. J Mater Sci 39(24), 71997205.Google Scholar
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D 42(12), 125502. Google Scholar
Zheng, R.K., Moody, M.P., Gault, B., Liu, Z.W., Liu, H. & Ringer, S.P. (2009). On the understanding of the microscopic origin of the properties of diluted magnetic semiconductors by atom probe tomography. J Magn Magn Mater 321(8), 935943.Google Scholar
Zhou, Y., Booth-Morrison, C. & Seidman, D.N. (2008). On the field-evaporation behavior of a model Ni-Al-Cr superalloy studied by picosecond pulsed-laser atom probe tomography. Microsc Microanal 14, 571580.Google Scholar