Article contents
Atomic Scale Analysis of Oxygen Vacancy Segregation At Grain Boundaries in Ceramic Oxides
Published online by Cambridge University Press: 02 July 2020
Abstract
The properties of ceramic oxides being developed for such varied applications as fuel cells, ionic transporting membranes, high-Tc superconductors, ferroelectrics and varistors are dominated by the presence of grain boundaries. Key to controlling the electronic properties of the grain boundaries in these materials is a fundamental understanding of the complex relationship between structure, composition and local electronic structure. The ability to characterize and directly correlate these parameters on the atomic scale is afforded by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Furthermore, the recent development of in-situ heating capabilities in the JEOL 201 OF STEM/TEM permits atomic resolution analysis to be performed at elevated temperatures and the interactions of grain boundaries with the oxygen vacancies determined.
Figure 1 shows an example of the type of experiment that can be performed using these methods.
- Type
- Quantitative Transmission Electron Microscopy of Interfaces (Organized by M. Rüehle, Y. Zhu and U. Dahmen)
- Information
- Copyright
- Copyright © Microscopy Society of America 2001
References
- 1
- Cited by