Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T12:17:32.590Z Has data issue: false hasContentIssue false

Atomic Force Microscopy Study of Atherosclerosis Progression in Arterial Walls

Published online by Cambridge University Press:  04 February 2016

Peter S. Timashev
Affiliation:
Institute of Laser and Information Technologies, 2 Pionerskaya St., 142092 Troitsk, Moscow, Russia
Svetlana L. Kotova*
Affiliation:
Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991 Moscow, Russia
Galina V. Belkova
Affiliation:
Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991 Moscow, Russia
Ekaterina V. Gubar’kova
Affiliation:
Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
Lidia B. Timofeeva
Affiliation:
Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
Natalia D. Gladkova
Affiliation:
Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
Anna B. Solovieva
Affiliation:
Department of Polymers and Composites, N.N.Semenov Institute of Chemical Physics, 4 Kosygin St., 119991 Moscow, Russia
*
*Corresponding author. [email protected]
Get access

Abstract

Cardiovascular disease remains the leading cause of mortality worldwide. Here we suggest a novel approach for tracking atherosclerosis progression based on the use of atomic force microscopy (AFM). Using AFM, we studied cross-sections of coronary arteries with the following types of lesions: Type II—thickened intima; Type III—thickened intima with a lipid streak; Type IV—fibrotic layer over a lipid core; Type Va—unstable fibrotic layer over a lipid core; Type Vc—very thick fibrotic layer. AFM imaging revealed that the fibrotic layer of an atherosclerotic plaque is represented by a basket-weave network of collagen fibers and a subscale network of fibrils that become looser with atherosclerosis progression. In an unstable plaque (Type Va), packing of the collagen fibers and fibrils becomes even less uniform than that at the previous stages, while a stable fibrotic plaque (Vc) has significantly tighter packing. Such alterations of the collagen network morphology apparently, led to deterioration of the Type Va plaque mechanical properties, that, in turn, resulted in its instability and propensity to rupture. Thus, AFM may serve as a useful tool for tracking atherosclerosis progression in the arterial wall tissue.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Choy, J., Mathieu-Costello, O. & Kassab, G. (2005). The effect of fixation and histological preparation on coronary artery dimensions. Ann Biomed Eng 33(8), 10271033.CrossRefGoogle ScholarPubMed
Dorph-Petersen, K.A., Nyengaard, J.R. & Gundersen, H.J. (2001). Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204, 232246.CrossRefGoogle ScholarPubMed
Finn, A.V., Nakano, M., Narula, J., Kolodgie, F.D. & Virmani, R. (2010). Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 30, 12821292.CrossRefGoogle ScholarPubMed
Graham, H.K., Hodson, N.W., Hoyland, J.A., Millward-Sadler, S.J., Garrod, D., Scothern, A., Griffiths, C.E.M., Watson, R.E.B., Cox, T.R., Erler, J.T., Trafford, A.W. & Sherratt, M.J. (2010). Tissue section AFM: In situ ultrastructural imaging of native biomolecules. Matrix Biol 29, 254260.CrossRefGoogle ScholarPubMed
Hansson, G.K. (2005). Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352, 16851695.CrossRefGoogle ScholarPubMed
Katsuda, S., Okada, Y., Minamoto, T., Oda, Y., Matsui, Y. & Nakanishi, I. (1992). Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. Arterioscler Thromb Vasc Biol 12, 494502.CrossRefGoogle ScholarPubMed
Kotova, S.L., Timashev, P.S., Guller, A.E., Shekhter, A.B., Misurkin, P.I., Bagratashvili, V.N. & Solovieva, A.B. (2015). Collagen structure deterioration in the skin of patients with pelvic organ prolapse determined by atomic force microscopy. Microsc Microanal 21, 324333.CrossRefGoogle ScholarPubMed
Lee, S.J., Choi, S., Kim, M.S., Cheong, Y., Kwak, H.-W., Park, H.-K. & Jin, K.-H. (2013). Short-term effect of cryotherapy on human scleral tissue by atomic force microscopy. Scanning 35, 302307.CrossRefGoogle ScholarPubMed
Libby, P. & Aikawa, M. (2003). Mechanisms of plaque stabilization with statins. Am J Cardiol 91, 4B8B.CrossRefGoogle ScholarPubMed
Marzec, K., Wrobel, T.P., Rygula, A., Maslak, E., Jasztal, A., Fedorowicz, A., Chlopicki, S. & Baranska, M. (2014). Visualization of the biochemical markers of atherosclerotic plaque with the use of Raman, IR and AFM. J Biophotonics 7, 744756.CrossRefGoogle ScholarPubMed
Mendis, S., Puska, P. & Norrving, B. (Eds.) 2011). Global Atlas on Cardiovascular Disease Prevention and Control. Geneva: World Health Organization.Google Scholar
Mirsaidov, U., Timashev, S.F., Polyakov, Y.S., Misurkin, P.I., Musaev, I. & Polyakov, S.V. (2011). Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy. Analyst 136, 570576.CrossRefGoogle ScholarPubMed
Ovchinnikova, O., Robertson, A-K.L., Wågsäter, D., Folco, E.J., Hyry, M., Myllyharju, J., Eriksson, P., Libby, P. & Hansson, G.K. (2009). T-cell activation leads to reduced collagen maturation in atherosclerotic plaques of apoe−/− mice. Am J Pathol 174, 693700.CrossRefGoogle ScholarPubMed
Rigozzi, S., Muller, R., Stemmer, A. & Snedeker, J.G. (2013). Tendon glycosaminoglycan proteoglycan side chains promote collagen fibril sliding—AFM observations at the nanoscale. J Biomech 46, 813818.CrossRefGoogle Scholar
Sivasankar, M. & Ivanisevic, A. (2007). Atomic force microscopy investigation of vocal fold collagen. Laryngoscope 117, 18761881.CrossRefGoogle ScholarPubMed
Sridharan, I., Ma, Y., Kim, T., Kobak, W., Rotmensch, J. & Wang, R. (2012). Structural and mechanical profiles of native collagen fibers in vaginal wall connective tissues. Biomaterials 33, 15201527.CrossRefGoogle ScholarPubMed
Stary, H.C, Chandler, A.B., Dinsmore, R.E., Fuster, V., Glagov, S., Insull, W., Rosenfeld, M.E., Schwartz, C.J., Wagner, W.D. & Wissler, R.W. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation 92, 13551374.CrossRefGoogle Scholar
Stary, H.C, Chandler, A.B., Glagov, S., Guyton, J.R., Insull, W., Rosenfeld, M.E., Schaffer, S.A., Schwartz, C.J., Wagner, W.D. & Wissler, R.W. (1994). A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. Circulation 89, 24622478.CrossRefGoogle ScholarPubMed
Stolz, M., Aebi, U. & Stoffler, D. (2007). Developing scanning probe-based nanodevices—Stepping out of the laboratory into the clinic. Nanomedicine 3, 5362.CrossRefGoogle ScholarPubMed
Stolz, M., Gottardi, R., Raiteri, R., Miot, S., Martin, I., Imer, R., Staufer, U., Raducanu, A., Duggelin, M., Baschong, W., Daniels, A.U., Friederich, N.F., Aszodi, A. & Aebi, U. (2009). Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat Nanotechnol 4, 186192.CrossRefGoogle ScholarPubMed
Thomasy, S.M., Raghunathan, V.K., Winkler, M., Reilly, C.M., Sadeli, A.R., Russell, P., Jester, J.V. & Murphy, C.J. (2014). Elastic modulus and collagen organization of the rabbit cornea: Epithelium to endothelium. Acta Biomaterialia 10, 785791.CrossRefGoogle ScholarPubMed
Wallace, J.M. (2012). Applications of atomic force microscopy for the assessment of nanoscale morphological and mechanical properties of bone. Bone 50, 420427.CrossRefGoogle ScholarPubMed
Wen, C.-Y., Wu, C.-B., Tang, B., Wang, T., Yan, C.-H., Lu, W.W., Pan, H., Hu, Y. & Chiu, K.-Y. (2012). Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy. Osteoarthr Cartilage 20, 916922.CrossRefGoogle ScholarPubMed