Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T01:02:27.173Z Has data issue: false hasContentIssue false

Applications in Stimulated Emission Depletion Microscopy: Localization of a Protein Toxin in the Endoplasmic Reticulum Following Retrograde Transport

Published online by Cambridge University Press:  02 November 2016

Cristina Herrera
Affiliation:
Wadsworth Center, Division of Infectious Disease, New York State Department of Health, Albany, NY 12208, USA Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA
Nicholas J. Mantis
Affiliation:
Wadsworth Center, Division of Infectious Disease, New York State Department of Health, Albany, NY 12208, USA Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA
Richard Cole*
Affiliation:
Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12201, USA Wadsworth Center, Division of Translational Medicine, New York State Department of Health, Albany, NY 12201, USA
*
*Corresponding author.[email protected]
Get access

Abstract

Retrograde transport is a process in which proteins are trafficked from the plasma membrane and endosomes to biosynthetic and secretory organelles, namely the Golgi apparatus and endoplasmic reticulum (ER). A number of plant and bacterial toxins, including cholera toxin and ricin toxin, exploit retrograde transport to gain entry into host cells, although the specifics of this process have remained difficult to probe by laser scanning confocal microscopy (LSCM). Here we demonstrate the use of super-resolution and live-cell imaging [stimulated emission depletion (STED)] to visualize exogenously applied ricin toxin within the ER. The improved resolution obtained by STED, as compared with LSCM (0.09 versus 0.19 μm), provides a more accurate determination of the amount of ricin that had trafficked to the ER.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Karrer, H.E. (1956). The ultrastructure of mouse lung; a note on the fine structure of mitochondria and endoplasmic reticulum of the bronchiolar epithelium. J Biophys Biochem Cytol 2(Suppl 4), 115118.Google Scholar
Lalkens, B., Testa, I., Willig, K.I. & Hell, S.W. (2012). MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM. Microsc Res Tech 75(1), 16.CrossRefGoogle ScholarPubMed
Mantis, N.J. (2014). Ricin toxin. In Manual of Security Sensitive Microbes and Toxins, Liu, D. (Ed.), pp. 1024. Boca Raton, FL: CRC Press.Google Scholar
Neumann, D., Buckers, J., Kastrup, L., Hell, S.W. & Jakobs, S. (2010). Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC Biophys 3(1), 4.Google Scholar
Osseforth, C., Moffitt, J.R., Schermelleh, L. & Michaelis, J. (2014). Simultaneous dual-color 3D STED microscopy. Opt Express 22(6), 70287039.Google Scholar
Rapak, A., Falnes, P.O. & Olsnes, S. (1997). Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol. Proc Natl Acad Sci USA 94(8), 37833788.Google Scholar
Saenz, J.B., Doggett, T.A. & Haslam, D.B. (2007). Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect Immun 75(9), 45524561.Google Scholar
Sandvig, K., Olsnes, S. & Pihl, A. (1976). Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J Biol Chem 251(13), 39773984.Google Scholar
Sandvig, K., Skotland, T., van Deurs, B. & Klokk, T.I. (2013). Retrograde transport of protein toxins through the Golgi apparatus. Histochem Cell Biol 140(3), 317326.Google Scholar
Schneider, G., Guttmann, P., Heim, S., Rehbein, S., Mueller, F., Nagashima, K., Heymann, J.B., Muller, W.G. & McNally, J.G. (2010). Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat Methods 7(12), 985987.Google Scholar
Slominska-Wojewodzka, M., Gregers, T.F., Walchli, S. & Sandvig, K. (2006). EDEM is involved in retrotranslocation of ricin from the endoplasmic reticulum to the cytosol. Mol Biol Cell 17(4), 16641675.Google Scholar
Slominska-Wojewodzka, M., Pawlik, A., Sokolowska, I., Antoniewicz, J., Wegrzyn, G. & Sandvig, K. (2014). The role of EDEM2 compared with EDEM1 in ricin transport from the endoplasmic reticulum to the cytosol. Biochem J 457(3), 485496.Google Scholar
Sokolowska, I., Walchli, S., Wegrzyn, G., Sandvig, K. & Slominska-Wojewodzka, M. (2011). A single point mutation in ricin A-chain increases toxin degradation and inhibits EDEM1-dependent ER retrotranslocation. Biochem J 436(2), 371385.Google Scholar
Song, K., Mize, R.R., Marrero, L., Corti, M., Kirk, J.M. & Pincus, S.H. (2013). Antibody to ricin a chain hinders intracellular routing of toxin and protects cells even after toxin has been internalized. PLoS One 8(4), e62417.CrossRefGoogle ScholarPubMed
Spooner, R.A., Watson, P.D., Marsden, C.J., Smith, D.C., Moore, K.A., Cook, J.P., Lord, J.M. & Roberts, L.M. (2004). Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383(Pt 2), 285293.Google Scholar
Stechmann, B., Bai, S.K., Gobbo, E., Lopez, R., Merer, G., Pinchard, S., Panigai, L., Tenza, D., Raposo, G., Beaumelle, B., Sauvaire, D., Gillet, D., Johannes, L. & Barbier, J. (2010). Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141(2), 231242.CrossRefGoogle ScholarPubMed
van Deurs, B., Sandvig, K., Petersen, O.W., Olsnes, S., Simons, K. & Griffiths, G. (1988). Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J Cell Biol 106(2), 253267.Google Scholar
Westphal, V., Rizzoli, S.O., Lauterbach, M.A., Kamin, D., Jahn, R. & Hell, S.W. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873), 246249.Google Scholar
Wildanger, D., Rittweger, E., Kastrup, L. & Hell, S.W. (2008). STED microscopy with a supercontinuum laser source. Opt Express 16(13), 96149621.Google Scholar
Yermakova, A., Klokk, T.I., Cole, R., Sandvig, K. & Mantis, N.J. (2014). Antibody-mediated inhibition of ricin toxin retrograde transport. mBio 5(2), e00995.Google Scholar
Yermakova, A., Klokk, T.I., O’Hara, J.M., Cole, R., Sandvig, K. & Mantis, N.J. (2016). Neutralizing monoclonal antibodies against disparate epitopes on ricin toxin’s enzymatic subunit interfere with intracellular toxin transport. Sci Rep 6, 22721.CrossRefGoogle ScholarPubMed
Supplementary material: File

Herrera supplementary material

Supplemental Table 1

Download Herrera supplementary material(File)
File 13.3 KB