Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T23:50:18.943Z Has data issue: false hasContentIssue false

Anatomical and Topochemical Aspects of Japanese beech (Fagus crenata) Cell Walls After Treatment with the Ionic Liquid, 1-Ethylpyridinium Bromide

Published online by Cambridge University Press:  16 October 2015

Toru Kanbayashi
Affiliation:
Division of Environmental Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
Hisashi Miyafuji*
Affiliation:
Division of Environmental Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
*
*Corresponding author. [email protected]
Get access

Abstract

Changes in the ultrastructure and chemical components, and their distribution in Japanese beech (Fagus crenata), during the ionic liquid 1-ethylpyridinium bromide ([EtPy][Br]) treatment were examined at the cellular level by light microscopy, scanning electron microscopy, and confocal Raman microscopy. Each of the tissues, including wood fibers, vessels and parenchyma cells treated with [EtPy][Br] showed specific morphological characteristics. Furthermore, lignin can be preferentially liquefied and eluted in [EtPy][Br] from the cell walls when compared to polysaccharides. However, the delignification was heterogeneous on the cell walls as lignin maintained a relatively high-concentration at the compound middle lamella, cell corners, inner surface of the secondary wall, and pits after [EtPy][Br] treatment.

Type
Biological Applications
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, U.P. (1999). An overview of Raman spectroscopy as applied to lignocellulosic materials. In Advances in Lignocellulosics Characterization, Argyropoulos, D.S. (Ed.), pp. 201225. Atlanta, GA: TAPPI Press.Google Scholar
Agarwal, U.P. (2006). Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224, 11411153.Google Scholar
Agarwal, U.P., Mcsweeny, J.D. & Ralph, S.A. (2011). FT-Raman investigation of milled wood lignins: Softwood, hardwood, and chemically modified black spruce lignins. J Wood Chem Tech 31, 324344.CrossRefGoogle Scholar
Agarwal, U.P. & Ralph, S.A. (1997). FT-Raman spectroscopy of wood: Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51, 16481655.CrossRefGoogle Scholar
Donohoe, B.S., Decker, S.R., Tucker, M.P., Himmel, M.E. & Vinzant, T.B. (2008). Visualization lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101, 913925.Google Scholar
Fergus, B.J. & Goring, D.A.I. (1970). The distribution of lignin in birch wood as determined by ultraviolet microscopy. Holzforschung 24, 118124.CrossRefGoogle Scholar
Fergus, B.J., Procter, A.R., Scott, J.A.N. & Goring, D.A.I. (1969). The distribution of lignin in spruce wood as determined by ultraviolet microscopy. Wood Sci Technol 3, 117138.CrossRefGoogle Scholar
Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, G. & Rogers, R.D. (2007). Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9, 6369.CrossRefGoogle Scholar
Fukaya, Y., Hayashi, K., Wada, M. & Ohno, H. (2008). Cellulose dissolution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem 10, 4446.CrossRefGoogle Scholar
Gierlinger, N., Keplinger, T., Harrington, M. & Schwanninger, M. (2013). Raman imaging of lignocellulosic feedstock. In Cellulose – Biomass Conversion, van de Ven, T. & Kadla, J. (Eds.), pp. 159192. Rijeka: InTech.Google Scholar
Harada, H. (1965). Ultrastructure of angiosperm vessels and ray parenchyma. In Cellular Ultrastructure of Woody Plants, Côté, W.A. (Ed.), pp. 235249. Syracuse: Syracuse University Press.Google Scholar
Jansen, S., Smets, E. & Baas, P. (1998). Vestures in woody plants: A review. IAWA J 19, 347382.CrossRefGoogle Scholar
Kanbayashi, T. & Miyafuji, H. (2013). Morphological changes of Japanese beech treated with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 59, 410418.Google Scholar
Kanbayashi, T. & Miyafuji, H. (2014). Comparative study of morphological changes in hardwoods treated with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 60, 152159.CrossRefGoogle Scholar
Kanbayashi, T. & Miyafuji, H. (2015 a). Raman microscopic analysis of wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. Holzforschung 69, 273279.Google Scholar
Kanbayashi, T. & Miyafuji, H. (2015 b). Topochemical and morphological characterization of wood cell wall treated with the ionic liquid, 1-ethylpyridinium bromide. Planta 242, 509518.CrossRefGoogle ScholarPubMed
Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heillinen, S. & Argyropoulos, D.S. (2007). Dissolution of wood in ionic liquids. J Agric Food Chem 55, 91429148.CrossRefGoogle ScholarPubMed
Lucas, M., Wagner, G.L., Nishiyama, Y., Hanson, L., Samayam, I.P., Schall, C.A., Langan, P. & Rector, K.D. (2011). Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102, 45184523.CrossRefGoogle ScholarPubMed
Miyafuji, H., Miyata, K., Saka, S., Ueda, F. & Mori, M. (2009). Reaction behavior of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 55, 215219.CrossRefGoogle Scholar
Miyafuji, H. & Suzuki, N. (2011). Observation by light microscope of sugi (Cryptomeria japonica) treated with the ionic liquid 1-ethyl-3-methylimidazolium chloride. J Wood Sci 57, 459461.CrossRefGoogle Scholar
Miyafuji, H. & Suzuki, N. (2012). Morphological changes in sugi (Cryptomeria japonica) wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 58, 222230.CrossRefGoogle Scholar
Musha, Y. & Goring, D.A.I. (1975). Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Sci Technol 9, 4558.Google Scholar
Nakamura, A., Miyafuji, H. & Saka, S. (2010 a). Liquefaction behavior of Western red cedar and Japanese beech in the ionic liquid 1-ethyl-3-methylimidazolium chloride. Holzforschung 64, 289294.CrossRefGoogle Scholar
Nakamura, A., Miyafuji, H. & Saka, S. (2010 b). Influence of reaction atmosphere on the liquefaction and depolymerization of wood in an ionic liquid, 1-ethyl-3-methylimidazolium chloride. J Wood Sci 56, 256261.Google Scholar
Oasmaa, A., Solantausta, Y., Arpiainen, V., Kuoppala, E. & Sipilä, K. (2010). Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels 24, 13801388.CrossRefGoogle Scholar
Pu, Y., Jiang, N. & Ragauskas, A.J. (2007). Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27, 2333.CrossRefGoogle Scholar
Röder, T., Koch, G. & Sixta, H. (2004). Application of confocal Raman spectroscopy for the topochemical distribution of lignin and cellulose in plant cell walls of beech wood (Fagus sylvatica L.) compared to UV microspectrophotometry. Holzforschung 58, 480482.CrossRefGoogle Scholar
Saka, S. & Goring, D.A.I. (1988). The distribution of lignin in white birch wood as determined by bromination with TEM-EDXA. Holzforschung 42, 149153.CrossRefGoogle Scholar
Saka, S. & Thomas, R.J. (1982). A study of lignification in loblolly pine tracheids by the SEM-EDXA technique. Wood Sci Technol 16, 167179.CrossRefGoogle Scholar
Seddon, K.R. (1997). Ionic liquids for clean technology. J Chem Tech Biotechnol 68, 351356.3.0.CO;2-4>CrossRefGoogle Scholar
Selig, M.J., Viamajala, S., Decker, S.R., Tucker, M.P., Himmel, M.E. & Vinzant, T.B. (2007). Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23, 13331339.Google Scholar
Sheldon, R. (2001). Catalytic reactions in ionic liquids. Chem Commun 23, 23992407.CrossRefGoogle Scholar
Smith, E. & Dent, G. (2005). Introduction, basic theory and principles. In Modern Raman Spectroscopy – A Practical Approach, Smith, E. & Dent, G. (Eds.), pp. 121. Chichester, England: John Wiley & Sons Ltd.Google Scholar
Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodriguez, H. & Rogers, R.D. (2009). Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11, 646655.Google Scholar
Swatloski, R.P., Spear, S.K., Holbrey, J.D. & Rogers, R.D. (2002). Dissolution of cellulose with ionic liquids. J Am Chem Soc 124, 49744975.CrossRefGoogle ScholarPubMed
Taherzadeh, M.J., Eklund, R., Gustafsson, L., Niklasson, C. & Liden, G. (1997). Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36, 46594665.CrossRefGoogle Scholar
Tsoumis, G. (1991). Chemical composition and ultrastructure of wood. In Science and Technology of Wood, Tsoumis, G. (Ed.), pp. 3456. New York: Van Nostrand Reinhold.Google Scholar
Viell, J. & Marquardt, W. (2011). Disintegration and dissolution kinetics of wood chips in ionic liquids. Holzforschung 65, 519525.CrossRefGoogle Scholar
Xu, C. & Etcheverry, T. (2008). Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel 87, 335345.CrossRefGoogle Scholar
Yokoo, T. & Miyafuji, H. (2014). Reaction behavior of wood in an ionic liquid, 1-ethylpyridinium bromide. J Wood Sci 60, 339345.Google Scholar
Zhang, H., Wu, J., Zhang, J. & He, J. (2005). 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules 38, 82728277.CrossRefGoogle Scholar
Zhang, X., Ma, J., Ji, Z., Yang, G.H., Zhou, X. & Xu, F. (2014). Using confocal Raman microscopy to real-time monitor poplar cell wall swelling and dissolution during ionic liquid pretreatment. Microsc Res Tech 77, 609618.CrossRefGoogle ScholarPubMed
Zhao, Y., Wang, Y., Zhu, J.Y., Ragauskas, A.J. & Deng, Y. (2008). Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99, 13201328.CrossRefGoogle ScholarPubMed