Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:04:05.433Z Has data issue: false hasContentIssue false

An Antibody-Sensitized Microfabricated Cantilever for the Growth Detection of Aspergillus niger Spores

Published online by Cambridge University Press:  18 January 2007

Natalia Nugaeva
Affiliation:
Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
Karin Y. Gfeller
Affiliation:
Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
Natalia Backmann
Affiliation:
Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
Marcel Düggelin
Affiliation:
Pharmacentre, Microscopy Centre, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
Hans Peter Lang
Affiliation:
Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
Hans-Joachim Güntherodt
Affiliation:
Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
Martin Hegner
Affiliation:
Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
Get access

Abstract

We demonstrate a new sensitive biosensor for detection of vital fungal spores of Aspergillus niger. The biosensor is based on silicon microfabricated cantilever arrays operated in dynamic mode. The change in resonance frequency of the sensor is a function of mass binding to the cantilever surface. For specific A. niger spore immobilization on the cantilever, each cantilever was individually coated with anti-Aspergillus niger polyclonal antibodies. We demonstrate the detection of single A. niger spores and their subsequent growth on the functionalized cantilever surface by online measurements of resonance frequency shifts. The new biosensor operating in humid air allows quantitative and qualitative detection of A. niger spores as well as detection of vital, functional spores in situ within ∼4 h. The detection limit of the sensor is 103 CFU mL−1. Mass sensitivity of the cantilever sensor is ∼53 pg Hz−1.

Type
Research Article
Copyright
2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arntz, Y., Seelig, J.D., Lang, H.P., Zhang, J., Hunziker, P., Ramseyer, J.P., Meyer, E., Hegner, M. & Gerber, C. (2003). Label-free protein assay on a nanomechanical cantilever array. Nanotechnology 14, 8690.Google Scholar
Backmann, N., Zahnd, C., Huber, F., Bietsch, A., Plückthun, A., Lang, H.P., Güntherodt, H.-J., Hegner, M. & Gerber, C. (2005). A label-free immunosensor array using single-chain antibody fragments. Proc Natl Acad Sci USA 102, 1458714592.Google Scholar
Baller, M.K., Lang, H.P., Fritz, J., Gerber, C., Gimzewski, J.K., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F.M., Ramseyer, J.P., Fornaro, P., Meyer, E. & Güntherodt, H.-J. (2000). A cantilever array-based artificial nose. Ultramicroscopy 82, 19.Google Scholar
Baselt, D.R., Lee, G.U., Hansen, K.M., Chrisey, L.A. & Colton, R.J. (1997). A high-sensitivity micromachined biosensor. Proc IEEE 85, 672680.Google Scholar
Bhalerao, K.D., Mwenifumbo, S.C., Soboyejo, A.B.O. & Soboyejo, W.O. (2004). Bounds in the sensitivity of BioMEMS devices for cell detection. Biomed Microdevices 6, 2331.Google Scholar
Bietsch, A., Zhang, J., Hegner, M., Lang, H.P. & Gerber, C. (2004). Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15, 873880.Google Scholar
Chen, G.Y., Thundat, T., Wachter, A. & Warmack, J. (1995). Adsorption-induced surface stress and its effect on resonance frequency of microcantilevers. J Appl Phys 77, 36183622.Google Scholar
Deacon, J.W. (1997). Modern Mycology. UK: Blackwell Science.
De Gennes, P.G. (1985). Wetting: Statics and dynamics. Rev Mod Phys 57, 827863.Google Scholar
Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H.-J., Gerber, C. & Gimzewski, J.K. (2000). Translating biomolecular recognition into nanomechanics. Science 288, 316318.Google Scholar
Gfeller, K.Y., Nugaeva, N. & Hegner, M. (2005). Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli. Appl Environ Microbiol 71, 26262631.Google Scholar
Gupta, A., Akin, D. & Bashir, R. (2004). Single virus particle mass detection using microresonators with nanoscale thickness. Appl Phys Lett 84, 19761978.Google Scholar
Hansen, K.M., Ji, H.F., Wu, G., Datar, R., Cote, R., Majumdar, A. & Thundat, T. (2001). Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73, 15671571.Google Scholar
Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K. & Schindler, H. (1996). Detection and localization of individual antibody–antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93, 34773481.Google Scholar
Hoog, G.S., Guarro, J., Gene, J. & Figueras, M.J. (2000). Atlas of Clinical Fungi. Utrecht, The Netherlands: Centraalbureau voor Schimmelcultures.
Ilic, B., Czaplewski, D. & Craighead, H.G. (2000). Mechanical resonant immunospecific biological detector. Appl Phys Lett 77, 450452.Google Scholar
Ilic, B., Czaplewski, D., Zalalutdinov, M. & Craighead, H.G. (2001). Single cell detection with micromechanical oscillators. J Vac Sci Technol B 19, 28252828.Google Scholar
Lang, H.P., Baller, M.K., Berger, R., Gerber, C., Gimzewski, J.K., Battiston, F.M., Fornaro, P., Ramseyer, J.P., Meyer, E. & Güntherodt, H.-J. (1999). An artificial nose based on a micromechanical cantilever array. Anal Chim Acta 393, 5965.Google Scholar
Lang, H.P., Berger, R., Andreoli, C., Brugger, J., Despont, M., Vettiger, P., Gerber, C., Gimzewski, J.K., Ramseyer, J.P., Meyer, E. & Güntherodt, H.-J. (1998). Sequential position readout from arrays of micromechanical cantilever sensors. Appl Phys Lett 72, 383385.Google Scholar
Liu, W., Montana, V., Chapman, E.R., Mohideen, U. & Pappura, V. (2003). Botulinum toxin type B micromechanosensor. Proc Natl Acad Sci USA 100, 1362113625.Google Scholar
McKendry, R., Zhang, J., Arnzt, Y., Strunz, T., Hegner, M., Lang, H.P., Baller, M.K., Certa, U., Meyer, E., Güntherodt, H.-J. & Gerber, C. (2002). Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci USA 99, 97839788.Google Scholar
Moulin, A.M., O'shea, S.J. & Welland, M.E. (2000). Microcantilever-based biosensors. Ultramicroscopy 82, 2331.Google Scholar
Nugaeva, N., Gfeller, K.Y., Backmann, N., Lang, H.P., Düggelin, M. & Hegner, M. (2005). Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21, 849856.Google Scholar
Viniegra-González, G., Saucedo-Castañeda, G., Lópes-Isunza, F. & Favela-Torres, E. (1993). Symmetrical branching mode for the kinetics of mycelial growth. J Biotechnol Bioeng 42, 110.Google Scholar
Weeks, B.L, Camarero, J., Noy, A., Miller, A.E., Stanker, L. & De Yoreo, J.J. (2003). A microcantilever-based pathogen detector. Scanning 25, 297299.Google Scholar