Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T01:20:20.476Z Has data issue: false hasContentIssue false

Advanced Identification and Quantification of In-Bearing Minerals by Scanning Electron Microscope-Based Image Analysis

Published online by Cambridge University Press:  03 May 2017

Kai Bachmann*
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Strasse 40, 09599 Freiberg, Germany
Max Frenzel
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Strasse 40, 09599 Freiberg, Germany
Joachim Krause
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Strasse 40, 09599 Freiberg, Germany
Jens Gutzmer
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Strasse 40, 09599 Freiberg, Germany Department of Mineralogy, TU Bergakademie Freiberg, Brennhausgasse 14, D-09596 Freiberg, Sachsen, Germany
*
*Corresponding author. [email protected]
Get access

Abstract

The identification and accurate characterization of discrete grains of rare minerals in sulfide base-metal ores is usually a cumbersome procedure due to the small grain sizes (typically <10 μm) and complex mineral assemblages in the material. In this article, a new strategy for finding and identifying indium minerals, and quantifying their composition and abundance is presented, making use of mineral liberation analysis (MLA) and electron probe microanalysis (EPMA). The method was successfully applied to polymetallic massive sulfide ores from the Neves-Corvo deposit in Portugal. The presence of roquesite and sakuraiite could be systematically detected, their concentration quantified by MLA measurements, and their identity later confirmed by EPMA analyses. Based on these results, an almost complete indium deportment could be obtained for the studied samples. This validates the approach taken, combining automated mineralogy data with electron microprobe analysis. A similar approach could be used to find minerals of other common minor and trace elements in complex base-metal sulfide ores, for example Se, Ge, Sb, or Ag, thus permitting the targeted development of resource technologies suitable for by-product recovery.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benzaazoua, M., Marion, P., Liouville-Bourgeois, L., Joussemet, R., Houot, R., Franco, A. & Pinto, A. (2002). Mineralogical distribution of some minor and trace elements during a laboratory flotation processing of Neves-Corvo ore (Portugal). Int J Miner Proces 66(1), 163181.Google Scholar
Benzaazoua, M., Marion, P., Pinto, A., Migeon, H. & Wagner, F.E. (2003). Tin and indium mineralogy within selected samples from the Neves Corvo ore deposit (Portugal): A multidisciplinary study. Min Eng 16, 12911302.Google Scholar
Carvalho, J.R.S., Fernandes, A.S., Moreira, B.B., Pinto, A.M.M., Relvas, J.M.R.S., Pacheco, N., Pinto, F. & Fonseca, R. (2013). Hydrothermal alteration and ore mineralogy at the Lombador massive sulphide orebody, Neves Corvo, Portugal: An on-going study. In Proceedings of the 12th SGA Biennial Meeting: “Mineral Deposits Research for a High-Tech World”, Jonsson, E. (Ed.), Uppsala, Sweden, pp. 514–517.Google Scholar
Carvalho, J., Relvas, J., Pinto, Á., Marques, F., Rosa, C., Pacheco, N. & Fonseca, R. (2014). New insights on the metallogenesis of the Neves Corvo deposit: Mineralogy and geochemistry of the zinc-rich Lombador orebody. Goldschmidt Abstracts 2014, 353.Google Scholar
Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V. & Gilbert, S.E. (2011). Minor elements in bornite and associated Cu-(Fe)-sulfides: A LA-ICP-MS study. Geochim Cosmochim Ac 75, 64736496.Google Scholar
Fandrich, R., Gu, Y., Burrows, D. & Moeller, K. (2007). Modern SEM-based mineral liberation analysis. Int J Miner Proc 84, 310320.Google Scholar
George, L., Cook, N.J., Ciobanu, C.L. & Wade, B.P. (2015). Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am Mineral 100, 548569.Google Scholar
Osbahr, I., Krause, J., Bachmann, K. & Gutzmer, J. (2015). Efficient and accurate identification of platinum-group minerals by a combination of mineral liberation and electron probe microanalysis with a new approach to the offline overlap correction of platinum-group element concentrations. Microsc Microanal 21(05), 10801095.Google Scholar
Pavlova, G. G., Palessky, S. V., Borisenko, A. S., Vladimirov, A. G., Seifert, T. & Phan, L. A. (2015). Indium in cassiterite and ores of tin deposits. Ore Geol Rev 66, 99113.CrossRefGoogle Scholar
Philibert, J. (1963). X-ray optics and x-ray microanalysis. In Proceedings of the Third International Symposium, Stanford University, Pattee H.H., Cosslett, V.E. & Engström, A. (Eds.), pp. 379392. New York, NY: Academic Press.Google Scholar
Philibert, J. & Tixier, R. (1968). Electron penetration and the atomic number correction in electron probe microanalysis. J Phys 1, 685694.Google Scholar
Pinto, A.M.M., Relvas, J.M.R.S., Carvalho, J.R.S., Pacheco, N. & Liu, Y. (2013). Mineralogy and distribution of indium and selenium metals within zinc-rich ore types of the Neves Corvo deposit, Portugal. Mineral Mag 77, 1973.Google Scholar
Reed, S.J.B. (1965). Characteristic fluorescence corrections in electron probe microanalysis. Br J Appl Phys 16, 913926.Google Scholar
Relvas, J.M.R.S., Barriga, F.J.A.S., Ferreira, A., Noiva, P.C., Pacheco, N. & Barriga, G. (2006). Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. I. Geology, mineralogy, and geochemistry. Econ Geol 101, 753790.Google Scholar
Schwarz-Schampera, U. & Herzig, P.M. (2002). Indium. Geology, mineralogy and economics. Berlin: Springer Verlag.Google Scholar
Serranti, S., Ferrini, V., Masi, U. & Cabri, L. (2002). Trace-element distribution in cassiterite and sulfides from Rubané and massive ores of the Corvo deposit, Portugal. Can Mineral 40, 815835.Google Scholar
Shimizu, M., Kato, A. & Shiozawa, T. (1986). Sakuraiite; chemical composition and extent of (Zn, Fe)In-FOR-CuSn substitution. Can Mineral 24(2), 405409.Google Scholar
Sinclair, W.D., Kooiman, G.J.A., Martin, D.A. & Kjarsgaard, I.M. (2006). Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geol Rev 28, 123145.Google Scholar
Tornos, F. (2006). Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geol Rev 28, 259307.Google Scholar