Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T03:01:34.055Z Has data issue: false hasContentIssue false

Adsorption Kinetics of DPPG Liposome Layers: A Quantitative Analysis of Surface Roughness

Published online by Cambridge University Press:  07 June 2013

Andreia A. Duarte
Affiliation:
Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Sérgio L. Filipe
Affiliation:
Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Luís M.G. Abegão
Affiliation:
Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Paulo J. Gomes
Affiliation:
Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Paulo A. Ribeiro
Affiliation:
Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
Maria Raposo*
Affiliation:
Departamento de Física, CEFITEC, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
*
*Corresponding author. E-mail: [email protected]
Get access

Abstract

Roughness of a positively charged poly(allylamine hydrochloride) (PAH) polyelectrolyte surface was shown to strongly influence the adsorption of 1.2-dipalmitoyl-sn-3-glycero-[phosphorrac-(1-glycerol)] (DPPG) liposomes on it. The adsorption kinetic curves of DPPG liposomes onto a low-roughness PAH layer reveal an adsorbed amount of 5 mg/m2, pointing to liposome rupture, whereas a high-roughness surface leads to adsorbed amounts of 51 mg/m2, signifying adsorption of intact liposomes. The adsorption kinetic parameters calculated from adsorption kinetic curves allow us to conclude that the adsorption process is due to electrostatic interactions and also depends on processes such as diffusion and reorganization of lipids on the surface. Analysis of the roughness kinetics enabled us to calculate a growth exponent of 0.19 ± 0.07 and a roughness exponent of around 0.84, revealing that DPPG liposomes adsorbed onto rough surfaces follow the Villain self-affine model. By relating self-affine surfaces with hydrophobicity, the liposome integrity was explained by the reduction in the number of water molecules on the PAH surface, contributing to counterion anchorage near PAH ionic groups, reducing the liposome/PAH layer electrostatic forces and, consequently, avoiding liposome rupture.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T.H., Min, Y., Weirich, K.L., Zeng, H., Fygenson, D. & Israelachvili, J.N. (2009). Formation of supported bilayers on silica substrates. Langmuir 25(12), 69977005.Google Scholar
Bangham, A.D., Standish, M.M. & Watkins, J.C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1), 238252.CrossRefGoogle ScholarPubMed
Bhushan, B. & Jung, Y.C. (2011). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56(1), 1108.Google Scholar
Bhushan, B., Jung, Y.C. & Koch, K. (2009). Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos Transact A Math Phys Eng Sci 367, 16311672.Google ScholarPubMed
Castellana, E.T. & Cremer, P.S. (2006). Solid supported lipid bilayers: From biophysical studies to sensor design. Surf Sci Rep 61(10), 429444.CrossRefGoogle ScholarPubMed
Cremer, P.S. & Boxer, S.G. (1999). Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem B 103(13), 25542559.CrossRefGoogle Scholar
Dante, S., Hauß, T., Steitz, R., Canale, C. & Dencher, N.A. (2011). Nanoscale structural and mechanical effects of beta-amyloid (1–42) on polymer cushioned membranes: A combined study by neutron reflectometry and AFM force spectroscopy. BBA Biomembranes 1808(11), 26462655.Google Scholar
de Souza, N.C., Marystela, F., Wohnrath, K., Silva, J.R., Oliveira, O.N. Jr. & Giacometti, J.A. (2007). Morphological characterization of Langmuir–Blodgett films from polyaniline and a ruthenium complex (Rupy): Influence of the relative concentration of Rupy. Nanotechnology 18(7), 075713075719.Google Scholar
de Souza, N.C., Silva, J.R., Rodrigues, C.A., Costa, L.d.F., Giacometti, J.A. & Oliveira, O.N. Jr. (2003). Adsorption processes in layer-by-layer films of poly(o-methoxyaniline): The role of aggregation. Thin Solid Films 428(1-2), 232236.CrossRefGoogle Scholar
de Souza, N.C., Zucolotto, V., Silva, J.R., Santos, F.R., dos Santos, D.S. Jr., Balogh, D.T., Oliveira, O.N. Jr. & Giacometti, J.A. (2005). Morphology characterization of layer-by-layer films from PAH/MA-co-DR13: The role of film thickness. J Colloid Interface Sci 285(2), 544550.Google Scholar
Duarte, A.A. & Raposo, M. (2012). Growth analysis of PEI/DPPG self-assembled films by quartz crystal microbalance. In Bioengineering (ENBENG), 2012 IEEE 2nd Portuguese Meeting, Coimbra, Portugal, February 23–25, 2012, pp. 16.Google Scholar
Family, F. & Vicsek, T. (1985). Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J Phys A: Math Gen 18, L75L81.Google Scholar
Ferreira, Q., Bernardo, G., Charas, A., Alcácer, L.S. & Morgado, J. (2009). Polymer light-emitting diode interlayers. Formation studied by current-sensing atomic force microscopy and scaling laws. J Phys Chem C Nanomater Interfaces 114(1), 572579.Google Scholar
Ferreira, Q., Gomes, P.J., Nunes, Y., Maneira, M.J.P., Ribeiro, P.A. & Raposo, M. (2007). Atomic force microscope characterization of PAH/PAZO multilayers. Microelectron Eng 84(3), 506511.Google Scholar
Gromelski, S., Saraiva, A.M., Krastev, R. & Brezesinski, G. (2009). The formation of lipid bilayers on surfaces. Colloids Surf B Biointerfaces 74, 477483.Google Scholar
Herminghaus, S. (2000). Roughness-induced non-wetting. Europhys Lett 52(2), 165170.Google Scholar
Herminghaus, S. (2012). Wetting, spreading, and adsorption on randomly rough surfaces. Eur Phys J E 35(6), 110.Google Scholar
Itoh, T. & Yamauchi, N. (2007). Surface morphology characterization of pentacene thin film and its substrate with under-layers by power spectral density using fast Fourier transform algorithms. Appl Surf Sci 253(14), 61966202.Google Scholar
Jung, Y.C. & Bhushan, B. (2006). Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17(19), 49704980.CrossRefGoogle Scholar
Keller, C.A. & Kasemo, B. (1998). Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75(3), 13971402.Google Scholar
Lasic, D.D. (1998). Novel applications of liposomes. Trends Biotechnol 16(7), 307321.CrossRefGoogle ScholarPubMed
Liu, J.Z., Zhang, L.D. & Yue, G.H. (2003). Fractal dimension in human cerebellum measured by magnetic resonance imaging. Biophys J 85(6), 40414046.CrossRefGoogle ScholarPubMed
Lourenco, J.M., Ribeiro, P.A., Botelho do Rego, A.M. & Raposo, M. (2007). Counterions in layer-by-layer films-influence of the drying process. J Colloid Interface Sci 313(1), 2633.Google Scholar
Lyklema, J. (1991). Fundamentals of Interface and Colloid Science, 1st ed. London: Academic Press.Google Scholar
Michel, M., Vautier, D., Voegel, J.C., Schaaf, P. & Ball, V. (2004). Layer by layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles. Langmuir 20(12), 48354839.Google Scholar
Moraes, M.L., Baptista, M.S., Itri, R., Zucolotto, V. & Oliveira, O.N. (2008). Immobilization of liposomes in nanostructured layer-by-layer films containing dendrimers. Mater Sci Eng C-Biomimetic Supramol Syst 28(4), 467471.Google Scholar
Oliveira, O.N. Jr., Raposo, M. & Dhanabalan, A. (2001). Langmuir-Blodgett (LB) and self-assembled (SA) polymeric films. In Handbook of Surfaces and Interfaces of Materials, Nalwa, H.S. (Ed.), pp. 163. New York: Academic Press.Google Scholar
Pfeiffer, I., Petronis, S., Köper, I., Kasemo, B. & Zäch, M. (2010). Vesicle adsorption and phospholipid bilayer formation on topographically and chemically nanostructured surfaces. J Phys Chem B 114(13), 46234631.Google Scholar
Raposo, M., Pontes, R.S., Mattoso, L.H.C. & Oliveira, O.N. Jr. (1997). Kinetics of adsorption of poly(o-methoxyaniline) self-assembled films. Macromolecules 30(20), 60956101.CrossRefGoogle Scholar
Reimhult, E., Zach, M., Hook, F. & Kasemo, B. (2006). A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2 . Langmuir 22(7), 33133319.CrossRefGoogle ScholarPubMed
Reviakine, I. & Brisson, A. (2000). Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16(4), 18061815.Google Scholar
Ribeiro, P.A., Steitz, R., Lopis, I.E., Haas, H., Souza, N.C., Oliveira, O.N. & Raposo, M. (2006). Thermal stability of poly(o-methoxyaniline) layer-by-layer films investigated by neutron reflectivity and UV-VIS spectroscopy. J Nanosci Nanotechnol 6(5), 13961404.Google Scholar
Richter, R.P. & Brisson, A.R. (2005). Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D, and ellipsometry. Biophys J 88(5), 34223433.Google Scholar
Sackmann, E. (1996). Supported membranes: Scientific and practical applications. Science 271(5245), 4348.Google Scholar
Salerno, M., Giacomelli, L., Derchi, G., Patra, N. & Diaspro, A. (2010). Atomic force microscopy in vitro study of surface roughness and fractal character of a dental restoration composite after air-polishing. Biomed Eng Online 9(59), 111.Google Scholar
Sauerbrey, G.Z. (1959). Use of the vibrating quartz for thin film weighing and micro weighing. Z Phys 155, 206222.Google Scholar
Serro, A.P., Carapeto, A., Paiva, G., Farinha, J.P.S., Colaço, R. & Saramago, B. (2012). Formation of an intact liposome layer adsorbed on oxidized gold confirmed by three complementary techniques: QCM-D, AFM and confocal fluorescence microscopy. Surf Interface Anal 44(4), 426433.CrossRefGoogle Scholar
Takahashi, H. & Finger, W.J. (1991). Dentin surface reproduction with hydrophilic and hydrophobic impression materials. Dent Mater 7(3), 197201.CrossRefGoogle ScholarPubMed
Tamm, L.K. & McConnell, H.M. (1985). Supported phospholipid bilayers. Biophys J 47(1), 105113.Google Scholar
Tang, Y., Wang, Z., Xiao, J., Yang, S., Wang, Y.J. & Tong, P. (2009). Studies of phospholipid vesicle deposition/transformation on a polymer surface by dissipative quartz crystal microbalance and atomic force microscopy. J Phys Chem B 113(45), 1492514933.Google Scholar
Torchilin, V. & Weissig, V. (2003). Liposomes: A Practical Approach. Oxford: OUP.Google Scholar
Torchilin, V.P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature reviews. Drug Discov 4(2), 145160.Google Scholar
Weirich, K.L., Israelachvili, J.N. & Fygenson, D.K. (2010). Bilayer edges catalyze supported lipid bilayer formation. Biophys J 98(1), 8592.Google Scholar
Wolf, D.E. & Villain, J. (1990). Growth with surface diffusion. J Europhys Lett 13(5), 389394.Google Scholar