Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T20:54:05.679Z Has data issue: false hasContentIssue false

2-Photon Characterization of Optical Proteolytic Beacons for Imaging Changes in Matrix-Metalloprotease Activity in a Mouse Model of Aneurysm

Published online by Cambridge University Press:  23 February 2016

Darren G. Haskett
Affiliation:
Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
David Maestas
Affiliation:
Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721, USA
Stephen J. Howerton
Affiliation:
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
Tyler Smith
Affiliation:
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
D. Catalina Ardila
Affiliation:
Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
Tom Doetschman
Affiliation:
Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
Urs Utzinger
Affiliation:
Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
Dominic McGrath
Affiliation:
Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
J. Oliver McIntyre
Affiliation:
Departments of Radiology and Radiological Sciences and Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
Jonathan P. Vande Geest*
Affiliation:
Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA Department of Bioengineering, The University of Pittsburgh, Pittsburgh, PA 15219, USA
*
*Corresponding author.[email protected]
Get access

Abstract

Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p<0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bal, U., Andresen, V., Baggett, B. & Utzinger, U. (2013). Intravital confocal and two-photon imaging of dual-color cells and extracellular matrix mimics. Microsc Microanal 19, 201212.CrossRefGoogle ScholarPubMed
Bartoli, M.A., Parodi, F.E., Chu, J., Pagano, M.B., Mao, D., Baxter, B.T., Buckley, C., Ennis, T.L. & Thompson, R.W. (2006). Localized administration of doxycycline suppresses aortic dilatation in an experimental mouse model of abdominal aortic aneurysm. Ann Vasc Surg 20, 228236.Google Scholar
Baxter, B.T., Pearce, W.H., Waltke, E.A., Littooy, F.N., Hallett, J.W. Jr., Kent, K.C., Upchurch, G.R. Jr., Chaikof, E.L., Mills, J.L., Fleckten, B., Longo, G.M., Lee, J.K. & Thompson, R.W. (2002). Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: Report of a prospective (Phase II) multicenter study. J Vasc Surg 36, 112.Google Scholar
Baxter, B.T., Terrin, M.C. & Dalman, R.L. (2008). Medical management of small abdominal aortic aneurysms. Circulation 117, 18831889.Google Scholar
Cassis, L.A., Gupte, M., Thayer, S., Zhang, X., Charnigo, R., Howatt, D.A., Rateri, D.L. & Daugherty, A. (2009). ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. Am J Physiol Heart Circ Physiol 296, H1660H1665.Google Scholar
Chen, E.I., Li, W., Godzik, A., Howard, E.W. & Smith, J.W. (2003). A residue in the S2 subsite controls substrate selectivity of matrix metalloproteinase-2 and matrix metalloproteinase-9. J Biol Chem 278, 1715817163.Google Scholar
Curci, J.A., Liao, S., Huffman, M.D., Shapiro, S.D. & Thompson, R.W. (1998 a). Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 102, 19001910.Google Scholar
Curci, J.A., Petrinec, D., Liao, S., Golub, L.M. & Thompson, R.W. (1998 b). Pharmacologic suppression of experimental abdominal aortic aneurysms: A comparison of doxycycline and four chemically modified tetracyclines. J Vasc Surg 28, 10821093.Google Scholar
Daugherty, A. & Cassis, L. (2004 a). Angiotensin II-mediated development of vascular diseases. Trends Cardiovasc Med 14, 117120.Google Scholar
Daugherty, A. & Cassis, L.A. (2004 b). Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 24, 429434.Google Scholar
Daugherty, A., Manning, M.W. & Cassis, L.A. (2000). Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105, 16051612.Google Scholar
Daugherty, A., Rateri, D.L. & Cassis, L.A. (2006). Role of the renin-angiotensin system in the development of abdominal aortic aneurysms in animals and humans. Ann N Y Acad Sci 1085, 8291.CrossRefGoogle ScholarPubMed
Davis, V., Persidskaia, R., Baca-Regen, L., Itoh, Y., Nagase, H., Persidsky, Y., Ghorpade, A. & Baxter, B.T. (1998). Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 18, 16251633.Google Scholar
Dua, A., Kuy, S., Lee, C.J., Upchurch, G.R. Jr. & Desai, S.S. (2014). Epidemiology of aortic aneurysm repair in the United States from 2000 to 2010. J Vasc Surg 59, 15121517.Google Scholar
Eagleton, M.J., Ballard, N., Lynch, E., Srivastava, S.D., Upchurch, G.R. Jr. & Stanley, J.C. (2006). Early increased MT1-MMP expression and late MMP-2 and MMP-9 activity during Angiotensin II induced aneurysm formation. J Surg Res 135, 345351.CrossRefGoogle ScholarPubMed
Frangioni, J.V. (2003). In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7, 626634.Google Scholar
Freestone, T., Turner, R.J., Coady, A., Higman, D.J., Greenhalgh, R.M. & Powell, J.T. (1995). Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 15, 11451151.Google Scholar
Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Borden, W.B., Bravata, D.M., Dai, S., Ford, E.S., Fox, C.S., Franco, S., Fullerton, H.J., Gillespie, C., Hailpern, S.M., Heit, J.A., Howard, V.J., Huffman, M.D., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Magid, D., Marcus, G.M., Marelli, A., Matchar, D.B., McGuire, D.K., Mohler, E.R., Moy, C.S., Mussolino, M.E., Nichol, G., Paynter, N.P., Schreiner, P.J., Sorlie, P.D., Stein, J., Turan, T.N., Virani, S.S., Wong, N.D., Woo, D. & Turner, M.B., C. American Heart Association Statistics & S. Stroke Statistics (2013). Heart disease and stroke statistics—2013 update: A report from the American Heart Association. Circulation 127, e6e245.Google Scholar
Goergen, C.J., Azuma, J., Barr, K.N., Magdefessel, L., Kallop, D.Y., Gogineni, A., Grewall, A., Weimer, R.M., Connolly, A.J., Dalman, R.L., Taylor, C.A., Tsao, P.S. & Greve, J.M. (2011). Influences of aortic motion and curvature on vessel expansion in murine experimental aneurysms. Arterioscler Thromb Vasc Biol 31, 270279.Google Scholar
Haskett, D., Azhar, M., Utzinger, U. & Vande Geest, J.P. (2013). Progressive alterations in microstructural organization and biomechanical response in the ApoE mouse model of aneurysm. Biomatter 3, pii: e24648. doi: 10.4161/biom.24648.Google Scholar
Haskett, D., Doyle, J.J., Gard, C., Chen, H., Ball, C., Estabrook, M.A., Encinas, A.C., Dietz, H.C., Utzinger, U., Vande Geest, J.P. & Azhar, M. (2012 b). Altered tissue behavior of a non-aneurysmal descending thoracic aorta in the mouse model of Marfan syndrome. Cell Tissue Res 347, 267277.CrossRefGoogle ScholarPubMed
Haskett, D., Speicher, E., Fouts, M., Larson, D., Azhar, M., Utzinger, U. & Vande Geest, J. (2012 a). The effects of angiotensin II on the coupled microstructural and biomechanical response of C57BL/6 mouse aorta. J Biomech 45, 772779.Google Scholar
Kent, K.C., Zwolak, R.M., Egorova, N.N., Riles, T.S., Manganaro, A., Moskowitz, A.J., Gelijns, A.C. & Greco, G. (2010). Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg 52, 539548.Google Scholar
Keyes, J.T., Haskett, D.G., Utzinger, U., Azhar, M. & Vande Geest, J.P. (2011). Adaptation of a planar microbiaxial optomechanical device for the tubular biaxial microstructural and macroscopic characterization of small vascular tissues. J Biomech Eng 133, 075001.Google Scholar
Keyes, J.T., Lockwood, D.R., Utzinger, U., Montilla, L.G., Witte, R.S. & Vande Geest, J.P. (2013). Comparisons of planar and tubular biaxial tensile testing protocols of the same porcine coronary arteries. Ann Biomed Eng 41, 15791591.Google Scholar
Kraft, P.J., Haynes-Johnson, D.E., Patel, L., Lenhart, J.A., Zivin, R.A. & Palmer, S.S. (2001). Fluorescence polarization assay and SDS-PAGE confirms matrilysin degrades fibronectin and collagen IV whereas gelatinase A degrades collagen IV but not fibronectin. Connect Tissue Res 42, 149163.Google Scholar
Leahy, A.A., Esfahani, S.A., Foote, A.T., Hui, C.K., Rainbow, R.S., Nakamura, D.S., Tracey, B.H., Mahmood, U. & Zeng, L. (2015). Analysis of the trajectory of osteoarthritis development in a mouse model by serial near-infrared fluorescence imaging of matrix metalloproteinase activities. Arthritis Rheumatol 67, 442453.Google Scholar
Leber, T.M. & Balkwill, F.R. (1997). Zymography: A single-step staining method for quantitation of proteolytic activity on substrate gels. Anal Biochem 249, 2428.Google Scholar
Lederle, F.A. (2011). The rise and fall of abdominal aortic aneurysm. Circulation 124, 10971099.Google Scholar
Lin, S.A., Suresch, D.L., Connolly, B., Mesfin, G., Gonzalez, R.J., Patel, M.R., Shevell, D., Johnson, T. & Bednar, B. (2015). Optical imaging biomarkers of drug-induced vascular injury. Mol Imaging 14, doi:10.2310/7290.2014.00054.Google Scholar
Longo, G.M., Xiong, W., Greiner, T.C., Zhao, Y., Fiotti, N. & Baxter, B.T. (2002). Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110, 625632.CrossRefGoogle ScholarPubMed
Mannello, F. & Sebastiani, M. (2003). Zymographic analyses and measurement of matrix metalloproteinase-2 and -9 in nipple aspirate fluids. Clin Chem 49, 15461550.Google Scholar
Manning, M.W., Cassis, L.A. & Daugherty, A. (2003). Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 23, 483488.Google Scholar
McIntyre, J.O., Fingleton, B., Wells, K.S., Piston, D.W., Lynch, C.C., Gautam, S. & Matrisian, L.M. (2004). Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem J 377, 617628.Google Scholar
McIntyre, J.O. & Matrisian, L.M. (2003). Molecular imaging of proteolytic activity in cancer. J Cell Biochem 90, 10871097.Google Scholar
McIntyre, J.O. & Matrisian, L.M. (2009). Optical proteolytic beacons for in vivo detection of matrix metalloproteinase activity. Methods Mol Biol 539, 155174.Google Scholar
McIntyre, J.O., Scherer, R.L. & Matrisian, L.M. (2010). Near-infrared optical proteolytic beacons for in vivo imaging of matrix metalloproteinase activity. Methods Mol Biol 622, 279304.Google Scholar
Miyama, N., Dua, M.M., Schultz, G.M., Kosuge, H., Terashima, M., Pisani, L.J., Dalman, R.L. & McConnell, M.V. (2012). Bioluminescence and magnetic resonance imaging of macrophage homing to experimental abdominal aortic aneurysms. Mol Imaging 11, 126134.Google Scholar
Phillips, E.H., Yrineo, A.A., Schroeder, H.D., Wilson, K.E., Cheng, J.X. & Goergen, C.J. (2015). Morphological and biomechanical differences in the elastase and AngII apoE (-/-) rodent models of abdominal aortic aneurysms. Biomed Res Int 2015, 413189.Google Scholar
Piedrahita, J.A., Zhang, S.H., Hagaman, J.R., Oliver, P.M. & Maeda, N. (1992). Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A 89, 44714475.Google Scholar
Pivoraite, U., Jarmalaviciute, A., Tunaitis, V., Ramanauskaite, G., Vaitkuviene, A., Kaseta, V., Biziuleviciene, G., Venalis, A. & Pivoriunas, A. (2015). Exosomes from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice. Inflammation 38, 19331941.Google Scholar
Ramaswamy, A.K., Hamilton, M. 2nd, Joshi, R.V., Kline, B.P., Li, R., Wang, P. & Goergen, C.J. (2013). Molecular imaging of experimental abdominal aortic aneurysms. Scientific World Journal 2013, 973150.Google Scholar
Rateri, D.L., Howatt, D.A., Moorleghen, J.J., Charnigo, R., Cassis, L.A. & Daugherty, A. (2011). Prolonged infusion of angiotensin II in apoE(-/-) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm. Am J Pathol 179, 15421548.Google Scholar
Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Benjamin, E.J., Berry, J.D., Borden, W.B., Bravata, D.M., Dai, S., Ford, E.S., Fox, C.S., Fullerton, H.J., Gillespie, C., Hailpern, S.M., Heit, J.A., Howard, V.J., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Makuc, D.M., Marcus, G.M., Marelli, A., Matchar, D.B., Moy, C.S., Mozaffarian, D., Mussolino, M.E., Nichol, G., Paynter, N.P., Soliman, E.Z., Sorlie, P.D., Sotoodehnia, N., Turan, T.N., Virani, S.S., Wong, N.D., Woo, D. & Turner, M.B., C. American Heart Association Statistics & S. Stroke Statistics (2012). Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation 125, e2e220.Google Scholar
Scherer, R.L., McIntyre, J.O. & Matrisian, L.M. (2008 a). Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev 27, 679690.Google Scholar
Scherer, R.L., VanSaun, M.N., McIntyre, J.O. & Matrisian, L.M. (2008 b). Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Mol Imaging 7, 118131.Google Scholar
Thompson, R.W. & Baxter, B.T. (1999). MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann N Y Acad Sci 878, 159178.Google Scholar
Thompson, R.W., Curci, J.A., Ennis, T.L., Mao, D., Pagano, M.B. & Pham, C.T. (2006). Pathophysiology of abdominal aortic aneurysms: Insights from the elastase-induced model in mice with different genetic backgrounds. Ann N Y Acad Sci 1085, 5973.Google Scholar
Thompson, R.W., Geraghty, P.J. & Lee, J.K. (2002). Abdominal aortic aneurysms: Basic mechanisms and clinical implications. Curr Probl Surg 39, 110230.Google Scholar
Thompson, R.W., Holmes, D.R., Mertens, R.A., Liao, S., Botney, M.D., Mecham, R.P., Welgus, H.G. & Parks, W.C. (1995). Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest 96, 318326.Google Scholar
Troeberg, L. & Nagase, H. (2003). Measurement of matrix metalloproteinase activities in the medium of cultured synoviocytes using zymography. Methods Mol Biol 225, 7787.Google Scholar
Utzinger, U., Baggett, B., Weiss, J.A., Hoying, J.B. & Edgar, L.T. (2015). Large-scale time series microscopy of neovessel growth during angiogenesis. Angiogenesis 136, 021001. doi:10.1115/1.4026471.Google Scholar
Vorp, D.A. (2007). Biomechanics of abdominal aortic aneurysm. J Biomech 40, 18871902.Google Scholar
Vorp, D.A. & Geest, J.P.V. (2005). Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler Thromb Vasc Biol 25, 15581566.Google Scholar
Weintraub, N.L. (2009). Understanding abdominal aortic aneurysm. N Engl J Med 361, 11141116.Google Scholar
Welch, A.R., Holman, C.M., Browner, M.F., Gehring, M.R., Kan, C.C. & Van Wart, H.E. (1995). Purification of human matrilysin produced in Escherichia coli and characterization using a new optimized fluorogenic peptide substrate. Arch Biochem Biophys 324, 5964.Google Scholar
Xie, X., Lu, H., Moorleghen, J.J., Howatt, D.A., Rateri, D.L., Cassis, L.A. & Daugherty, A. (2012). Doxycycline does not influence established abdominal aortic aneurysms in angiotensin II-infused mice. PLoS One 7, e46411.Google Scholar
Xiong, W., Knispel, R.A., Dietz, H.C., Ramirez, F. & Baxter, B.T. (2008). Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg 47, 166172. discussion 172.Google Scholar