Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T10:11:51.584Z Has data issue: false hasContentIssue false

FORMULATION OF ENTOMOPATHOGENS FOR THE CONTROL OF GRASSHOPPERS AND LOCUSTS

Published online by Cambridge University Press:  31 May 2012

D. Moore
Affiliation:
International Institute of Biological Control, Silwood Park, Ascot, SL5 7TA, United Kingdom
R.W. Caudwell
Affiliation:
School of Biological Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW, United Kingdom
Get access

Abstract

Successful development of a biological pesticide requires attention not only to the biological agent, but also to formulation, application, and the biology of the pest–pathogen interaction in the field. Emphasis in our review is given to fungi, Metarhizium spp. and Beauveria bassiana (Balsamo) Vuillemin, as the most suitable agents, and oil-based ULV formulations or baits as the most promising application techniques for use with locusts and grasshoppers. The efficacy of the pathogen isolate must be maximized; selection is aimed at those that are suitably virulent, specific, and well adapted to the relevant environmental conditions. Opportunities exist for manipulation of the characteristics of the isolate by genetic means and by developments in culturing techniques. Formulation requirements are stability during storage and the ability to carry the active ingredient successfully to the target insect at application. Likely storage methods for fungi would be as dry conidia, perhaps with clay diluents, or in oils; the characteristics of both are briefly discussed. At application, efficacy of dose transfer and protection of the biological agent against environmental constraints such as UV radiation are needed. Baits have advantages in terms of dose transfer but logistical problems associated with the bulkiness of the carrier remain. Technological advances, including those that offer the prospect of carrier production in situ from dense precursors, and better knowledge of feeding behaviour have improved the prospects for baits. Multi-disciplinary research reducing dependency on the biological agent and exploiting formulation chemistry and application technology is required in developing biological pesticides.

Résumé

Le succès d'un pesticide biologique suppose le choix judicieux de l'agent de lutte lui-même, mais aussi sa préparation adéquate, son application au bon moment et selon la bonne technique et l'étude de la biologie des interactions organisme–pathogène en nature. La révision présentée ici s'attarde surtout à l'emploi des champignons Metarhizium spp. et Beauveria bassiana (Balsamo) Vuillemin qui sont considérés comme les meilleurs agents, aux préparations ultra-légères à base d'huile ou aux appâts, considérés comme les techniques d'application les plus prometteuses dans la lutte contre les criquets. L'efficacité de l'isolat pathogène doit être maximisée; celui-ci doit être suffisamment virulent, spécifique et bien adapté aux conditions environnementales dans lesquelles il sera utilisé. La manipulation des caractéristiques d'un isolat pathogène est possible par des méthodes génétiques et par raffinement des techniques de culture. Les caractéristiques d'une bonne préparation sont sa stabilité durant l'entreposage et son efficacité à véhiculer les ingrédients actifs jusqu'aux insectes-cibles au moment de l'application. La méthode d'entreposage la plus efficace est probablement la dilution de conidies séchées dans des diluants de l'argile ou dans des huiles; les caractéristiques de ces deux types de milieux sont examinées. Au moment de l'application, il faut assurer l'efficacité de transmission de la dose et la protection de l'agent contre les contraintes du milieu, entre autres les rayons UV. Les appâts permettent la transmission efficace des doses, mais comportent des contraintes logistiques associées au volume excessif du substrat. Les progrès technologiques, notamment ceux qui offrent la possibilité de produire des substrats in situ à partir de précurseurs compacts, et une meilleure connaissance des habitudes alimentaires des insectes cibles rendront probablement plus accessible l'utilisation d'appâts. La préparation de pesticides biologiques suppose donc une recherche multi-disciplinaire qui s'attarde moins à l'agent biologique lui-même qu'à la chimie de la préparation et à la technologie d'application. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Papua New Guinea Oil Palm Reserch Association, Harly Research Centre, P.O. Box 21, Bialla, West New Britain, Papua New Guinea.

References

Abreu, O.C., Valarini, P.J., Cruz, B.P. Bastos, Oliveira, D.A. and Gabriel, D.. 1987. Studies of the effect of storage conditions on the viability and pathogenicity of spores of Metarhizium anisopliae (Metsch.) Sorokin. Entomology Newsletter 18: 2.Google Scholar
Alves, S.B., Neto, S. Silveira, Pereira, R.M. and Macedo, N.. 1987. Estudo de formulacoes do Metarhizium anisopliae (Metsch.) Sorok. em diferentes condicoes de armazenamento. Ecossistema 12: 7887.Google Scholar
Amsellem, Z., Sharon, A. and Gressel, J.. 1991. Abolition of selectivity of two mycoherbicidal organisms and enhanced virulence of avirulent fungi by an invert emulsion. Phytopathology 81: 985988.Google Scholar
Åppelqvist, L.-A. 1989. The chemical nature of vegetable oils. pp. 2237in Röbbelen, G., Downey, R.K., and Ashri, A. (Eds.), Oil Crops of the World—Their Breeding and Utilization. McGraw-Hill, New York, NY.Google Scholar
Auld, B.A. 1992. Mass production, formulation and application of fungi as biocontrol agents, pp. 219–229 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Auld, B.A. 1993. Vegetable oil suspension emulsions reduce dew dependence of a mycoherbicide. Crop Protection 12: 477479.Google Scholar
Ball, B.V., Pye, B.J., Carreck, N.L., Moore, D. and Bateman, R.P.. 1994. Laboratory testing of a mycopesticide on non target organisms: The effects of an oil formulation of Metarhizium flavoviride applied to Apis mellifera. Biocontrol Science and Technology 118: 310315.Google Scholar
Bateman, R.P. 1992. Controlled droplet application of mycopesticides to locusts, pp. 249–254 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Bateman, R.P. 1994. Physical properties and atomisation of ULV formulations of myco-insecticides. pp. 222225in Proceedings of the IOBC/WPRS Meeting, Zurich, September 1993.Google Scholar
Bateman, R.P. 1997. Methods of application of microbial pesticide formulations for the control of grasshoppers and locusts, pp. 69–81 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Bateman, R.P., Carey, M., Moore, D. and Prior, C.. 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Annals of Applied Biology 122: 145152.Google Scholar
Bateman, R., Carey, M., Batt, D., Prior, C., Abraham, Y., Moore, D., Jenkins, N. and Fenlon, J.. 1996. Screening for virulent isolates of entomopathogenic fungi against the desert locust, Schistocerca gregaria (Forskål). Biocontrol Science and Technology 6: 549560.Google Scholar
Bates, C. 1994. Novel formulaions for locust and grasshopper control, pp. 977980in Brighton Crop Protection Conference—Pests and Diseases—1994. British Crop Protection Council, Farnham, UK.Google Scholar
Beker, M. J. and Rapoport, A.I.. 1987. Conservation of yeast by dehydration. Advances in Biochemical Engineering Biotechnology 35: 127171.Google Scholar
Berger, K.G. 1989. Practical measures to minimise rancidity in processing and storage, pp. 6782in Allen, J.C., and Hamilton, R.J. (Eds.), Rancidity in Foods, 2nd ed. Elsevier Applied Science, London and New York.Google Scholar
Bernays, E.A., Howard, J.J., Champagne, D. and Estesen, B.J.. 1991. Rutin: A phagostimulant for the polyphagous acridid Schistocerca americana. Entomologia Experimentalis et Applicata 60: 1928.Google Scholar
Bernays, E.A. and Simpson, S.J.. 1990. Nutrition, pp. 105127in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. Wiley Interscience, New York, NY.Google Scholar
Bidochka, M.J. and Khachatourians, G.G.. 1991. Microbial and protozoan pathogens of grasshoppers and locusts as potential biocontrol agents. Biocontrol Science and Technology 1: 243259.Google Scholar
Boppré, M., Seibt, U. and Wickler, W.. 1984. Pharmacophagy in grasshoppers? Zonocerus attracted to and ingesting pyrrolizidine alkaloids. Entomologia Experimentalis et Applicata 35: 115117.Google Scholar
Boyette, C.D., Quimby, P.C. Jr.,, Connick, W.J. Jr.,, Daigle, D.J. and Fulgham, F.E.. 1991. Progress in the production, formulation and application of mycoherbicides. pp. 209222in TeBeest, D.O. (Ed.), Microbial Control of Weeds. Chapman and Hall, New York and London.Google Scholar
Byers, J.A. 1991. Pheromones and chemical ecology of locusts. Biological Reviews 66: 347378.Google Scholar
Caldwell, M.M. 1981. Plant response to solar ultraviolet radiation, pp. 169197in Lange, O.L., Nobel, P.S., Osmond, C.B., and Ziegler, H. (Eds.), Physiological Plant Ecology. I. Responses to the Physical Environment. Encyclopedia of Plant Physiology, Volume 12A. Springer-Verlag, Berlin.Google Scholar
Capinera, J.L. and Hibbard, B.E.. 1987. Bait formulation of chemicals and microbial insecticides for suppression of crop-feeding grasshoppers. Journal of Agricultural Entomology 4: 337344.Google Scholar
Carr, M.E., Doane, W.M., Wing, R.E. and Bagley, E.B.. 1993. Starch Encapsulation of Biologically Active Agents by a Continuous Process. United States Patent Number 5,183,690.Google Scholar
Carr, M.E., Wing, R.E. and Doane, W.M.. 1991. Encapsulation of Atrazine within a starch matrix by extrusion processing. Cereal Chemistry 68: 262266.Google Scholar
Caudwell, R.W. 1993. Bait formulation of microbial agents for grasshopper control. Biocontrol News and Information 14: 53N57N.Google Scholar
Caudwell, R.W. and Gatehouse, A.G.. 1994. Extruded starch contact baits for the formulation of grasshopper and locust entomopathogens. pp. 6774in Brighton Crop Protection Conference—Pests and Diseases—1994. British Crop Protection Council, Farnham, UK.Google Scholar
Chapman, R.F. 1990. Food selection, pp. 3972in Chapman, R.F., and Joern, A. (Eds.), Biology of grasshoppers. Wiley Interscience, New York, NY.Google Scholar
Charnley, A.K. 1992. Mechanisms of fungal pathogenesis in insects with particular reference to locusts. pp. 181–190 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Clement, J.A., Porter, R., Butt, T.M. and Beckett, A.. 1994. The role of hydrophobicity in attachment of urediniospores and sporelings of Uromyces viciae-fahae. Mycological Research 98: 12171228.Google Scholar
Coppen, P.P. 1989. The use of antioxidants. pp. 83104in Allen, J.C., and Hamilton, R.J. (Eds.), Rancidity in Foods, 2nd ed. Elsevier Applied Science, London and New York.Google Scholar
Couch, T.L. and Ignoffo, C.M.. 1981. Formulation of insect pathogens, pp.621–634 in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, London.Google Scholar
Courshee, R.J. 1983. Criteria for choosing application techniques for desert locust control. EPPO Bulletin 13: 535540.Google Scholar
Crowe, J., Crowe, L.M. and Chapman, D.. 1984. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 223: 701703.Google Scholar
Daigle, D.J., Connick, W.J. Jr.,, Quimby, P.C. Jr.,, Evans, J., Trask-Morrell, B. and Fulgham, F.E.. 1990. Invert emulsions: Carrier and water source for the mycoherbicide, Alternaria cassiae. Weed Technology 4: 327331.Google Scholar
Daoust, R.A., Ward, M.G. and Roberts, D.W.. 1982. Effect of formulation on the virulence of Metarhizium anisopliae conidia against mosquito larvae. Journal of Invertebrate Pathology 40: 228236.Google Scholar
Daoust, R.A., Ward, M.G. and Roberts, D.W.. 1983. Effect of formulation on the viability of Metarhizium anisopliae conidia. Journal of Invertebrate Pathology 41: 151160.Google Scholar
Ewen, A.B. and Mukerji, M.K.. 1980. Evaluation of Nosema locustae (Microsporida) as a control agent of grasshopper populations in Saskatchewan. Journal of Invertebrate Pathology 35: 295303.Google Scholar
Ewen, A.B. and Mukerji, M.K.. 1987. Field evaluation of carbofuran bait against grasshopper (Orthoptera: Acrididae) populations in Saskatchewan. The Canadian Entomologist 119: 537540.Google Scholar
Fargues, J., Maniania, N.K., Delmas, J.C. and Smits, N.. 1992. Influence de la tempèrature sur la croissance in vitro d'hyphomycètes entomopathogènes. Agronomie 12: 557564.Google Scholar
Fargues, J. and Robert, P.H.. 1983 a. Influence de l'antécédent nutritionnel sur la virulence de deux souches de l'hyphomycéte entomopathogéne Metarhizium anisopliae. Mycopathologia 81: 145154.Google Scholar
Fargues, J. and Robert, P.H.. 1983 b. Effects of passaging through scarabeid hosts on virulence and host specificity of two strains of the entomopathogenic hyphomycete Metarhizium anisopliae. Canadian Journal of Microbiology 29: 576583.Google Scholar
Fargues, F., Robert, P.H. and Reisinger, O.. 1979. Formulation des productions de masse de l'hyphomycéte entomopathogéne Beauveria en vue des applications phytosanitaires. Annales de Zoologie, Écologie Animale 11: 247257.Google Scholar
Fargues, J., Rougier, M., Goujet, R. and Itier, B.. 1988. Effet du rayonnement solaire sur la persistance des conidiospores de I'hyphomycète entomopathogène, Nomuraea rileyi, à la surface d'un convert végétal. Entomophaga 33: 357370.Google Scholar
Feng, M.G., Poprawski, T.J. and Khachatourians, G.G.. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology 4: 334.Google Scholar
Ford, A.L. and Larrimer, W.H.. 1921 a. Observations on the attractiveness of materials used in grasshopper baits. Journal of Economic Entomology 14: 285291.Google Scholar
Ford, A.L. and Larrimer, W.H.. 1921 b. Some factors influencing the efficiency of grasshopper baits. Journal of Economic Entomology 14: 292299.Google Scholar
Fuzeau-Braesch, S., Genin, E., Jullien, R., Knowles, E. and Papin, C.. 1988. Composition and role of volatile substances in atmosphere surrounding two gregarious locusts, Locusta migratoria and Schistocerca gregaria. Journal of Chemical Ecology 14: 10231033.Google Scholar
Goettel, M.S. and Jaronski, S.T.. 1997. Safety and registration of microbial control agents of grasshoppers and locusts, pp.83–99 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Goettel, M.S. and Roberts, D.W.. 1992. Mass production, formulation and field application of entomopathogenic fungi, pp.230–238 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Goettel, M.S., St. Leger, R.J., Bhairi, S., Jung, M.K., Oakley, B.R., Roberts, D.W. and Staples, R.C.. 1990. Pathogenicity and growth of Metarhizium anisopliae stably transformed to benomyl resistance. Current Genetics 17: 129132.Google Scholar
Goral, V.M. 1979. Effect of cultivation conditions on the entomopathogenic properties of muscardine fungi. pp. 217228in Ignoffo, C.M. (Ed.), Proceedings of the First Joint US/USSR Conference on the Production, Selection and Stand ardization of Entomopathogenic Fungi of the US/USSR Joint Working Group on the Production of Substances by Microbial Means. National Science Foundation, Washington, DC.Google Scholar
Graham-Bryce, I.J. 1977. Crop protection: A consideration of the effectiveness and disadvantages of current methods and of the scope for improvement. Philosophical Transactions of the Royal Society, London, Series B 281: 163179.Google Scholar
Greaves, M.P., Bailey, J.A. and Hargreaves, J.A.. 1989. Mycoherbicides: Opportunities for genetic manipulation. Pesticide Science 26: 93101.Google Scholar
Hallsworth, J.E. and Magan, N.. 1994 a. Effects of KCI concentration on the accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Letters in Applied Microbiology 18: 811.Google Scholar
Hallsworth, J.E. and Magan, N.. 1994 b. Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology 140: 27052713.Google Scholar
Hallsworth, J.E. and Magan, N.. 1994 c. Improved biological control by changing polyols/trehalose in conidia of entomopathogens. pp. 10911096in Brighton Crop Protection Conference—Pests and Diseases—1994. British Crop Protection Council, Farnham, UK.Google Scholar
Harman, G.E., Jin, X., Stasz, T.E., Peruzzotti, G., Leopold, A.C. and Taylor, A.G.. 1991. Production of conidial biomass of Trichoderma harzianum for biological control. Biological Control 1: 2328.Google Scholar
Harper, J.M. 1981. Extrusion of Foods. CRC Press, Boca Raton, FL. Volume I, 212 pp.; Volume II, 174 pp.Google Scholar
Harper, J.M. 1989. Food extruders and their application, pp.1–15 in Mercier, C., Linko, P., and Harper, J.M. (Eds.), Extrusion Cooking. American Association of Cereal Chemists Inc., St. Paul, MN.Google Scholar
Hedgecock, S., Moore, D., Higgins, P.M. and Prior, C.. 1995. Influence of moisture content on temperature tolerance and storage of Metarhizium flavoviride conidia in an oil formulation. Biocontrol Science and Technology. 5: 371377.Google Scholar
Henry, J.E., Fowler, J.L., Wilson, M.C. and Onsager, J.A.. 1985. Infection of West African grasshoppers with Nosema locustae Canning (Protozoa: Microsporida: Nosematidae). Tropical Pest Management 31: 144147.Google Scholar
Henry, J.E. and Oma, E.A.. 1981. Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. pp. 573586in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970–1980. Academic Press, London.Google Scholar
Henry, J.E. and Onsager, J.A.. 1982. Experimental control of the Mormon cricket, Anabrus simplex, by Nosema locustae (Microspora: Microsporida), a protozoan parasite of grasshoppers (Ort: Acrididae). Entomophaga 27: 197201.Google Scholar
Henry, J.E., Tiahrt, K. and Oma, E.A.. 1973. Importance of timing, spore concentrations, and levels of spore carrier in applications of Nosema locustae (Microsporida: Nosematidae) for control of grasshoppers. Journal of Invertebrate Pathology 21: 263272.Google Scholar
Hokkanen, H. and Pimentel, D.. 1984. New approach for selecting biological control agents. The Canadian Entomologist 116: 11091121.Google Scholar
Hopkins, T.L. and Young, H.. 1990. Attraction of the grasshopper, Melanoplus sanguinipes, to host plant odors and volatile components. Entomologia Experimentalis et Applicata 56: 249258.Google Scholar
Ignoffo, CM., Hostetter, D.L., Sikorowski, P.P., Sutter, G. and Brooks, W.M.. 1977. Inactivation of representative species of entomopathogenic viruses, a bacterium, fungus and protozoan by an ultraviolet light source. Environmental Entomology 6: 411415.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1993. Persistence of the entomopathogenic fungus, Beauveria bassiana, on phylloplanes of crested wheatgrass and alfalfa. Biological Control 3: 258270.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1995. Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control. 5: 581590.Google Scholar
Jackson, M.A. and Schisler, D.A.. 1992. The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Applied and Environmental Microbiology 58: 22602265.Google Scholar
Jackson, A.M., Whipps, J.M., Lynch, J.M. and Bazin, M.J.. 1991. Effects of some carbon and nitrogen sources on spore germination, production of biomass and antifungal metabolites by species of Trichoderma and Gliocladium virens antagonistic to Sclerotium cepivorum. Biocontrol Science and Technology 1: 4351.Google Scholar
Jenkins, N.E. and Goettel, M.S.. 1997. Methods for mass production of microbial control agents of grasshoppers and locusts, pp. 37–48 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Jenkins, N.E. and Prior, C.. 1993. Growth and formation of true conidia by Metarhizium flavoviride in a simple liquid medium. Mycological Research 97: 14891494.Google Scholar
Jin, X., Harman, G.E. and Taylor, A.G.. 1991. Conidial biomass and dessication tolerance of Trichoderma harzianum produced at different medium water potentials. Biological Control 1: 237243.Google Scholar
Johnson, D.L. 1997. Nosematidae and other Protozoa as agents for control of grasshoppers and locusts: Current status and prospects, pp. 375–389 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Johnson, D.L. and Goettel, M.S.. 1993. Reduction of grasshopper populations following field applications of the fungus Beauveria bassiana. Biocontrol Science and Technology 3: 165175.Google Scholar
Johnson, D.L., Goettel, M.S., Bradley, C., van der Paauw, H. and Maiga, B.. 1992. Field trials with the entomopathogenic fungus Beauveria bassiana against grasshoppers in Mali, West Africa, July, 1990. pp. 296–310 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Johnson, D.L. and Pavlikova, E.. 1986. Reduction of consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporida: Nosematidae). Journal of Invertebrate Pathology 48: 232238.Google Scholar
Jones, K.A., Moawad, G., McKinley, D.J. and Grzywacz, D.. 1993. The effect of natural sunlight on Spodoptera littoralis nuclear polyhedrosis virus. Biocontrol Science and Technology 3: 189197.Google Scholar
Jutsum, A.R. and Cherrett, J.M.. 1981. A new matrix for toxic baits for control of the leaf-cutting ant Acromyrmex octospinosus (Reich) (Hymenoptera: Formicidae). Bulletin of Entomological Research 71: 607616.Google Scholar
Kal'vish, T.K. 1974. The influence of the temperature and relative humidity of the air on muscardine fungi. Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR Biologicheskikh Nauk 5: 6777. [In Russian. English summary read. Review of Applied Entomology, 1975, abstract 2788.]Google Scholar
Kaya, H.K. and Nelsen, C.E.. 1985. Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: A new approach for insect control and other applications. Environmental Entomology 14: 572574.Google Scholar
Keller, S. 1992. The Beauveria-Melolontha project: Experiences with regard to locust and grasshopper control, pp. 279–286 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Kerwin, J.L. 1984. Fatty acid regulation of the germination of Erynia variabilis conidia on adults and puparia of the lesser housefly, Fannia canicularis. Canadian Journal of Microbiology 30: 158161.Google Scholar
Killick, H.J. 1990. Influence of droplet size, solar ultraviolet light and protectants, and other factors on the efficacy of baculovirus sprays against Panolis flammea (Schiff.) (Lepidoptera: Noctuidae). Crop Protection 9: 2128.Google Scholar
Kleespies, R.G. and Zimmermann, G.. 1992. Production of blastospores by three strains of Metarhizium anisopliae (Metch.) Sorokin in submerged culture. Biocontrol Science and Technology 2: 127135.Google Scholar
Kooyman, C. and Shah, P.. 1992. Exploration for locust and grasshopper pathogens, pp. 208–213 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Krieg, A., Gröner, A., Huber, J. and Matter, M.. 1980. Über die Wirkung von mittel - und langwelligen ultravioletten Strahlen (UV-B und UVA) auf insektenpathogene Bakterien und Viren und deren Beeinflussung durch UV -Schutzstoffe. Nachrichtenblatt des Deutschen Pflanzenschützdienstes 32: 100105.Google Scholar
Lisansky, S.G. and Hall, R.A.. 1982. Fungal control of insects, pp. 127345in Smith, J.E., Berry, P.R., and Kristonson, B. (Eds.), The Filamentous Fungi. Edward Arnold, London.Google Scholar
Lobo Lima, M.L., Brito, J.M. and Henry, J.E.. 1992. Biological control of grasshoppers in the Cape Verde Islands. pp. 287–295 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Lomer, C.J., Bateman, R.P., Godonou, I., Kpindou, D., Shah, P.A., Paraiso, A. and Prior, C.. 1993. Field infection of Zonocerus variegatus following application of an oil-based formulation of Metarhizium flavoviride conidia. Biocontrol Science and Technology 3: 337346.Google Scholar
Lomer, C.J., Prior, C. and Kooyman, C.. 1997. Development of Metarhizium spp. for the control of grasshoppers and locusts, pp. 265–286 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
MacCuaig, R.D. and Watts, W.S.. 1963. Laboratory studies to determine the effectiveness of DDVP sprays for control of locusts. Journal of Economic Entomology 56: 850858.Google Scholar
Martignoni, M.E. and Iwai, P.J.. 1985. Laboratory evaluation of new ultraviolet absorbers for protection of Douglas-fir tussock moth (Lepidoptera: Lymantriidae) Baculovirus. Journal of Economic Entomology 78: 982987.Google Scholar
Matthews, G.A. 1992. Pesticide Application Methods. Longman Scientific & Technical. 405 pp.Google Scholar
McCabe, D. and Soper, R.S.. 1985. Preparation of an Entomopathogenic Fungal Insect Control Agent. United States Patent Number 4,530,834.Google Scholar
McCammon, S.A. and Rath, A.C.. 1994. Separation of Metarhizium anisopliae strains by temperature dependent germination rates. Mycological Research 98: 12531257.Google Scholar
McClatchie, G.V., Moore, D., Bateman, R.P. and Prior, C.. 1994. Effects of temperature on the viability of the conidia of Metarhizium flavoviride in oil formulations. Mycological Research 98: 749756.Google Scholar
McGuire, M.R. and Shasha, B.S.. 1992. Adherent starch granules for encapsulation of insect control agents. Journal of Economic Entomology 85: 14251433.Google Scholar
McGuire, M.R., Streett, D.A. and Shasha, B.S.. 1991. Evaluation of starch encapsulation for formulation of grasshopper (Orthoptera: Acrididae) entomopoxviruses. Journal of Economic Entomology 84: 16521656.Google Scholar
Meneley, J.C. and Sluss, T.P.. 1988. Development of “NOLO Bait” (Nosema locustae) for the control of grasshoppers and locusts, pp. 597602in Brighton Crop Protection Conference—Pests and Diseases—1988. British Crop Protection Council, Farnham, UK.Google Scholar
Moore, D., Bateman, R.P., Carey, M. and Prior, C.. 1995. Long term storage of Metarhizium flavoviride conidia in oil formulations for the control of locusts and grasshoppers. Biocontrol Science and Technology 5: 193199.Google Scholar
Moore, D., Bridge, P.D., Higgins, P.M., Bateman, R.P. and Prior, C.. 1993. Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annals of Applied Biology 122: 605616.Google Scholar
Moore, D. and Prior, C.. 1993. The potential of mycoinsecticides. Biocontrol News and Information 14: 31N40N.Google Scholar
Mukerji, M.K., Ewen, A.B., Craig, C.H. and Ford, R.J.. 1981. Evaluation of insecticide-treated bran baits for grasshopper control in Sasktachewan (Orthoptera: Acrididae). The Canadian Entomologist 113: 705710.Google Scholar
Murphy, D.J. 1990. Storage lipid bodies in plants and other organisms. Progress in Lipid Research 29: 299324.Google Scholar
Nasseh, O.M., Freres, T., Wilps, J., Kirkilionis, E. and Krall, S.. 1992. Field cage trials on the effects of enriched neem oil, insect growth regulators and the pathogens Beauveria bassiana and Nosema locustae on desert locusts in the Republic of Niger, pp. 311–320 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Nguyen, N.T. 1980. Insecticide acquisition by drift sprayed hoppers, pp. 7885in Report of the Australian Plague Locust Commission for 1979–1980, Research Supplement.Google Scholar
Onsager, J.A., Henry, J.E. and Foster, R.N.. 1980 a. A model for predicting efficacy of carbaryl bait for control of rangeland grasshoppers. Journal of Economic Entomology 73: 726729.Google Scholar
Onsager, J.A., Henry, J.E., Foster, R.N. and Staten, R.T.. 1980 b. Acceptance of wheat bran bait by species of rangeland grasshoppers. Journal of Economic Entomology 73: 548551.Google Scholar
Onsager, J.A., Rees, N.E., Henry, J.E. and Foster, R.N.. 1981. Integration of bait formulations of Nosema locustae and carbaryl for control of rangeland grasshoppers. Journal of Economic Entomology 74: 183187.Google Scholar
Peregrine, D.J. 1973. Toxic baits for the control of pest animals. PANS 19: 523533.Google Scholar
Pereira, R.M. and Roberts, D.W.. 1991. Alginate and cornstarch mycelial formulations of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae. Journal of Economic Entomology 84: 16571661.Google Scholar
Polon, J.A. 1973. Formulation of pesticidal dusts, wettable powders and granules, pp. 143234in Valkenberg, W.V. (Ed.), Pesticide Formulations. Marcel Dekker, Inc., New York, NY.Google Scholar
Prior, C. and Greathead, D.J.. 1989. Biological control of locusts: The potential for the exploitation of pathogens. FAO Plant Protection Bulletin 37: 3748.Google Scholar
Prior, C., Jollands, P. and le Patourel, G.. 1988. Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae). Journal of Invertebrate Pathology 52: 6672.Google Scholar
Prior, C., Lomer, C.J., Herren, H., Paraïso, A., Kooyman, C. and Smit, J.J.. 1992. The IIBC/IITA/DFPV collaborative research programme on the biological control of locusts and grasshoppers, pp. 8–18 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Reinecke, P., Andersch, W., Stenzel, K. and Hartwig, J.. 1990. BIO 1020, a new microbial insecticide for use in horticultural crops, pp. 4954in Brighton Crop Protection Conference—Pests and Diseases—1990. British Crop Protection Council, Farnham, UK.Google Scholar
Reisinger, O., Fargues, J., Robert, P. and Arnould, M.-F.. 1977. Effet de l'argile sur la conservation des microrganismes. I. Étude ultrastructurale de la biodegradation dans le sol de l'hyphomycète entomopathogène Beauveria bassiana. Annales de Microbiologie 128: 271287.Google Scholar
Roberts, D.W. and Campbell, A.S.. 1977. Stability of entomopathogenic fungi, pp. 1976in Ignoffo, C.M., and Hostetter, D.L. (Eds.), Environmental Stability of Microbial Insecticides. Symposium 1974. Miscellaneous Publication of the Entomological Society of America 10.Google Scholar
Roberts, D.W. and Sweeney, A.W.. 1982. Production of Fungi Imperfecti with vector control potential. pp. 409413in Invertebrate Pathology and Microbial Control. Proceedings 3rd International Colloquium on Invertebrate Pathology, University of Sussex, 6–10 September 1982.Google Scholar
Saito, T. and Aoki, J.. 1983. Toxicity of free fatty acids on the larvae surfaces of two lepidopterous insects towards Beauveria bassiana (Bals.) Vuill and Paecilomyces fumosoroseus (Wize) Brown et Smith (Deuteromycetes: Moniliales). Applied Entomology and Zoology 18: 225233.Google Scholar
Salama, H.S. and Morris, O.N.. 1993. The use of Bacillus thuringiensis in developing countries, pp. 237253in Entwistle, P.F., Cory, J.S., Bailey, M.I., and Higgs, S. (Eds.), Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice. John Wiley & Sons, Chichester and New York.Google Scholar
Shaath, N.A. 1990. The chemistry of sunscreens, pp. 211233in Lowe, N.J., and Shaath, N.A. (Eds.), Sunscreens Development, Evaluation and Regulatory Aspects. Marcel Dekker, Inc., New York and Basel.Google Scholar
Shapiro, M. 1992. Use of optical brighteners as radiation protectants for gypsy moth (Lepidoptera: Lymantriidae) nuclear polyhedrosis virus. Journal of Economic Entomology 85: 16821686.Google Scholar
Shotwell, R.L. 1944. Evaluation of Baits and Bait Ingredients used in Grasshopper Control. United States Department of Agriculture Technical Bulletin 793: 51 pp.Google Scholar
Simpson, S.J. 1990. The pattern of feeding, pp. 73103in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. Wiley Interscience, New York, NY.Google Scholar
Simpson, S.J. and Ludlow, A.R.. 1986. Why locusts start to feed: A comparison of causal factors. Animal Behaviour 34: 480496.Google Scholar
Smith, D. and Onions, A.H.S.. 1983. A comparison of some preservation techniques for fungi. Transactions of the British Mycological Society 81: 535540.Google Scholar
Smith, R.J. and Grula, E.A.. 1982. Toxic compounds on the larval surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. Journal of Invertebrate Pathology 39: 1522.Google Scholar
Sosa-Gómez, D.R., Alves, S.B. and Machado-Neto, R.. 1984. Caracterización de once aislamientos de Metarhizium anisopliae (Metsch) Sorok. III. Inactivación de conidios con luz ultravioleta y zimogramas del sistema de alfa-estearasas. Revista de Investigatión CIRPON 2: 4754.Google Scholar
Stathers, T.E., Moore, D. and Prior, C.. 1993. The effect of different temperatures on the viability of Metarhizium flavoviride conidia stored in vegetable and mineral oils. Journal of Invertebrate Pathology 62: 111115.Google Scholar
Streett, D.A. and McGuire, M.R.. 1988. Microbial control of rangeland grasshoppers: New techniques for the detection of entomopathogens. Montana AgResearch 5: 15.Google Scholar
Symmons, P. 1992. Strategies to combat the desert locust. Crop Protection 11: 206212.Google Scholar
Templeton, G.E. and Heiny, D.K.. 1989. Improvement of fungi to enhance mycoherbicide potential, pp. 127151in Whipps, J.M., and Lumsden, R.D. (Eds.), Biotechnology of Fungi for Improving Plant Growth. Cambridge University Press, Cambridge.Google Scholar
Thomas, K.C., Khachatourians, G.G. and Ingledew, W.M.. 1987. Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Canadian Journal of Microbiology 33: 1220.Google Scholar
Torto, B., Obeng-Ofori, D., Njagi, P.G.N., Hassanalli, A. and Amiani, H.. 1994. Aggregation pheromone system of adult gregarious desert locust Schistocerca gregaria (Forskål). Journal of Chemical Ecology 20: 17491762.Google Scholar
Trumper, S. and Simpson, S.J.. 1993. Regulation of salt intake by nymphs of Locusta migratoria. Journal of Insect Physiology 39: 857864.Google Scholar
Valkenburg, W.V. 1973. The stability of emulsions, pp. 93112in Valkenburg, W.V. (Ed.), Pesticide Formulations. Marcel Dekker, New York, NY.Google Scholar
Valovage, W.D. and Kosaraju, R.S.. 1992. Effects of pH and buffer systems on resting spore germination of the grasshopper (Orthoptera: Acrididae) pathogen, Entomophaga calopteni (= Entomophaga grylli, Pathotype 2) (Entomophthoralae: Entomophthoraceae.). Environmental Entomology 21: 12021211.Google Scholar
Waktola, W.M. 1992. Studies on the Development of Toxic Baits for Locusts. M.Phil, thesis, University of Wales, Bangor. 212 pp.Google Scholar
Walford, J., Lim, T.M. and Lam, T.J.. 1991. Replacing live foods with microencapsulated diets in the rearing of seabass (hates calcarlfer) larvae: Do the larvae ingest and digest protein-membrane microcapsules? Aquaculture 92: 225235.Google Scholar
Warburton, S.C., Donald, A.M. and Smith, A.C.. 1992. The structure and mechanical properties of brittle starch foams. Journal of Material Science 27: 14691474.Google Scholar
Ward, M.G. 1984. Formulation of biological insecticides—surfactant and diluent selection, pp. 175184in Scher, H.B. (Ed.), Advances in Pesticide Formulation Technology. American Chemical Society Symposium Series 254.Google Scholar
Wrigley, G. 1973. Mineral oils as carriers for ultra-low-volume (ULV) spraying. PANS 19: 5461.Google Scholar
Zelazny, B., Goettel, M.S. and Keller, B.. 1997. The potential of bacteria for the microbial control of grasshoppers and locusts, pp. 147–156 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Zimmermann, G. 1982. Effect of high temperatures and artificial sunlight on the viability of conidia of Metarhizium anisopliae. Journal of Invertebrate Pathology 40: 3640.Google Scholar