Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-06T10:05:48.975Z Has data issue: false hasContentIssue false

Finite-element simulation with a homogenization model andexperimental study of free drop tests of corrugated cardboard packaging

Published online by Cambridge University Press:  16 November 2012

Abdelkader Djilali Hammou
Affiliation:
Universitéde Laghouat, 03000 Laghouat, Algérie
Pham Tuong Minh Duong
Affiliation:
Université de Reims Champagne-Ardenne, GRESPI/Matériaux, Procédés et Systèmes d’Emballage, UFR Sciences, Moulin de la Housse, BP 1039, 51687 Reims, France
Boussad Abbès*
Affiliation:
Université de Reims Champagne-Ardenne, GRESPI/Matériaux, Procédés et Systèmes d’Emballage, UFR Sciences, Moulin de la Housse, BP 1039, 51687 Reims, France
Mohammed Makhlouf
Affiliation:
Université Djillali Liabès de Sidi-Bel-Abbès, BP 89, 22000 Sidi-Bel-Abbès, Algérie
Ying-Qiao Guo
Affiliation:
Université de Reims Champagne-Ardenne, GRESPI/Matériaux, Procédés et Systèmes d’Emballage, UFR Sciences, Moulin de la Housse, BP 1039, 51687 Reims, France
*
a Corresponding author:[email protected]
Get access

Abstract

This paper presents experimental and numerical studies of drop tests of corrugatedcardboard packaging containing different foam cushions. An efficient homogenization modelfor the corrugated cardboard has been developed. In our homogenized model, the corrugatedcardboard is represented by a 2D plate. Instead of using a local constitutive law(relating the strains to the stresses) at each material point, the homogenization givesthe global rigidities (relating the generalized strains to the resultant forces) for theequivalent homogeneous plate. This model was implemented into the FE software ABAQUS. Thefoam behaviour was experimentally determined and modelled using a crushable foam model ofABAQUS. The packages are tested in free fall from a given height on a rigid floor. Thedeceleration of the packed product was recorded using a triaxial accelerometer. Thenumerical results obtained using the FE simulation with the homogenized model agree wellwith the experimental results. We have also shown that the contribution of the corrugatedcardboard box to the shock response could not be neglected in the design of cushioningpackage.

Type
Research Article
Copyright
© AFM, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Goyal, S., Upasani, S., Patel, D.M., Improving impact tolerance of portable electric products : Case study of cellular phones, Exp. Mech. 39 (1999) 4352 CrossRefGoogle Scholar
Goyal, S., Methods for realistic drop-testing, Int. J. Microcircuits Electron. Packag. 23 (2000) 4552 Google Scholar
Gorman, S.P., In-package methods improve shock, vibration testing, Packag. Technol. Eng. 6 (1997) 2629 Google Scholar
Masso-Moreu, Y., Mills, N.J., Impact compression of polystyrene foam pyramids, Int. J. Impact Eng. 28 (2003) 653676 CrossRefGoogle Scholar
Low, K.H., Drop-impact cushioning effect of electronic products formed by plates, Adv. Eng. Softw. 34 (2003) 3150 CrossRefGoogle Scholar
Liu, T.L., Rutledge, L., Zhou, Y., Simulation, analysis critical to safe product distribution, Packag. Technol. Eng. 8 (1999) 2527 Google Scholar
Mills, N.J., Masso-Moreu, Y., Finite element analysis (FEA) applied to polyethylene foam cushions in package drop tests, Packag. Technol. Sci. 18 (2005) 2938 CrossRefGoogle Scholar
Hahn, E.K., Rudo, A.D., Westerlind, B.S., Carlsson, L.A., Compressive strength of edge-loaded corrugated board panels, Exp. Mech. 32 (1992) 259265 CrossRefGoogle Scholar
Lee, M.H., Park, J.M., Flexural stiffness of selected corrugated structures, Packag. Technol. Sci. 17 (2004) 275286 CrossRefGoogle Scholar
Urbanik, T.J., Effect of corrugated flute shape on fiberboard edgewise crush strength and bending stiffness, J Pulp Pap. Sci. 27 (2001) 330335 Google Scholar
Biancolini, M.E., Brutti, C., Numerical and experimental investigation of the strength of corrugated board packages, Packag. Technol. Sci. 16 (2003) 4760 CrossRefGoogle Scholar
Talbi, N., Batti, A., Ayad, R., Guo, Y.Q., An analytical homogenization model for finite element modeling of corrugated cardboard, Compos. Struct. 88 (2009) 280289 CrossRefGoogle Scholar
Rami, H.A., Choi, J., Wei, B.S., Popil, R., Schaepe, M., Refined nonlinear finite element models for corrugated fiberboards, Compos. Struct. 87 (2009) 321333 Google Scholar
Baum, G.A., Brennan, D.C., Habeger, C.C., Orthotropic elastic constants of papers, Tappi J. 64 (1981) 97101 Google Scholar
Abaqus user subroutine reference manual v6.7. Simulia, 2007
Abbès, B., Guo, Y.Q., Analytic homogenization for torsion of orthotropic sandwich plates : Application to corrugated cardboard, Compos. Struct. 92 (2010) 699706 CrossRefGoogle Scholar
Nordstrand, T., Carlsson, L.A., Allen, H.G., Transverse shear stiffness of structural core sandwich, Compos. Struct. 27 (1994) 317329 CrossRefGoogle Scholar
Gibson, L.J., Ashby, M.F., The mechanics of three-dimensional cellular materials, P. Roy. Soc. A Mat. 382 (1982) 4359 CrossRefGoogle Scholar
Li, Q.M., Mines, R.A.W., Strain measures for rigid crushable foam in uniaxial compression, Strain 38 (2002) 132140 CrossRefGoogle Scholar
Machado, G.C., Alves, M.K., Rossi, R., Silva, C.R.A., Numerical modelling of large strain behaviour of polymeric crushable foams, Appl. Math. Model. 35 (2011) 12711281 CrossRefGoogle Scholar