Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T04:55:18.320Z Has data issue: false hasContentIssue false

Analysis using higher-order XFEM: implicit representation ofgeometrical features from a given parametric representation

Published online by Cambridge University Press:  20 June 2014

M. Moumnassi*
Affiliation:
ESIEE-Amiens, 14 quai de la Somme, 80082 Amiens Cedex 2, France
S.P.A. Bordas*
Affiliation:
School of Engineering, Institute of Mechanics and Advanced Materials, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA, UK
R. Figueredo
Affiliation:
ESIEE-Amiens, 14 quai de la Somme, 80082 Amiens Cedex 2, France
P. Sansen
Affiliation:
ESIEE-Amiens, 14 quai de la Somme, 80082 Amiens Cedex 2, France
*
a Corresponding author:[email protected]
Get access

Abstract

We present a promising approach to reduce the difficulties associated with meshingcomplex curved domain boundaries for higher-order finite elements. In this work,higher-order XFEM analyses for strong discontinuity in the case of linear elasticityproblems are presented. Curved implicit boundaries are approximated inside an unstructuredcoarse mesh by using parametric information extracted from the parametric representation(the most common in Computer Aided Design CAD). This approximation provides local gradedsub-mesh (GSM) inside boundary elements (i.e. an element split by the curved boundary)which will be used for integration purpose. Sample geometries and numerical experimentsillustrate the accuracy and robustness of the proposed approach.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moumnassi, M., Belouettar, S., Béchet, E., Bordas, S.P., Quoirin, D., Potier-Ferry, M., Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces, Comput. Methods Appl. Mech. Eng. 200 (2011) 774796 CrossRefGoogle Scholar
Düster, A., Parvizian, J., Yang, Z., Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Eng. 197 (2008) 37683782 CrossRefGoogle Scholar
Dréau, K., Chevaugeon, N., Moës, N., Studied x-fem enrichment to handle material interfaces with higher order finite element, Comput. Methods Appl. Mecha. Eng. 199 (2010) 19221936 CrossRefGoogle Scholar
Legrain, G., Chevaugeon, N., Dréau, K., High order x-fem and levelsets for complex microstructures: Uncoupling geometry and approximation, Comput. Methods Appl. Mech. Eng. 241-244 (2012) 172189 CrossRefGoogle Scholar
Pereira, J.P., Duarte, C.A., Guoy, D., Jiao, X., hp-generalized fem and crack surface representation for non-planar 3-d cracks, Int. J. Numer. Methods Eng. 77 (2009) 601633 CrossRefGoogle Scholar
Kästner, M., Müller, S., Goldmann, J., Spieler, C., Brummund, J., Ulbricht, V., Higher-order extended fem for weak discontinuities-level set representation, quadrature and application to magneto-mechanical problems, Int. J. Numer. Methods Eng. 93 (2013) 14031424 CrossRefGoogle Scholar
Nadal, E., Ródenas, J.J., Albelda, J., Tur, M., Tarancón, J.E., Fuenmayor, F.J., Efficient finite element methodology based on cartesian grids: Application to structural shape optimization, Abstract and Applied Analysis 2013 (2013) 953786 CrossRefGoogle Scholar
Moës, N., Dolbow, J., Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1999) 131150 3.0.CO;2-J>CrossRefGoogle Scholar
Strouboulis, T., Copps, K., Babuška, I., The generalized finite element method, Comput. Methods Appl. Mech. Eng. 190 (2001) 40814193 CrossRefGoogle Scholar
Joulaian, M., Düster, A., Local enrichment of the finite cell method for problems with material interfaces, Comput. Mech. 52 (2013) 741762 CrossRefGoogle Scholar
Benowitz, B.A., Waisman, H., A spline-based enrichment function for arbitrary inclusions in extended finite element method with applications to finite deformations, Int. J. Numer. Methods Eng. 95 (2013) 361386 CrossRefGoogle Scholar