Hostname: page-component-599cfd5f84-ncv4z Total loading time: 0 Render date: 2025-01-07T07:09:55.487Z Has data issue: false hasContentIssue false

Joint distributions, the uncertainty principle and positive distributions

Published online by Cambridge University Press:  28 March 2014

LEON COHEN*
Affiliation:
City University of New York, 695 Park Avenue, New York, NY 10065, U.S.A. Email: [email protected]

Abstract

We examine the construction of joint probabilities for non-commuting observables. We show that there are indications in standard quantum mechanics that imply the existence of conditional expectation values, which in turn implies the existence of a joint distribution. We also argue that the uncertainty principle has no bearing on the existence of joint distributions but only constrains the marginal distributions. In addition, we show that within classical probability theory there are mathematical quantities that are similar to quantum mechanical wave functions. This is shown by generalising a theorem of Khinchin on the necessary and sufficient conditions for a function to be a characteristic function.

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the Office of Naval Research

References

Baraniuk, R. G. and Jones, D. L. (1995) Unitary Equivalence: A New Twist on Signal Processing. IEEE Transactions on Signal Processing 43 (10)22692282.CrossRefGoogle Scholar
Bopp, F. (1956) La Mechanique Quantique Est-Elle Une Mechanique Statistique Classique Particuliere? Annales de l'Institut Henri Poincaré 15 81112.Google Scholar
Choi, H. I. and Williams, W. J. (1989) Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Transactions on Acoustics, Speech and Signal Processing 37 862871.CrossRefGoogle Scholar
Claasen, T. and Mecklenbrauker, W. (1980) The Wigner distribution – A tool for time-frequency analysis, Parts I-III. Philips Journal of Research 35 (3–6) 217–250, 276–300, 372389.Google Scholar
Cohen, L. (1966) Generalized phase–space distribution functions. Journal of Mathematical Physics 7 781786.CrossRefGoogle Scholar
Cohen, L. (1989) Time-Frequency Distributions – A Review. Proceedings of the IEEE 77 941981.CrossRefGoogle Scholar
Cohen, L. (1995) Time-Frequency Analysis, Prentice-Hall.Google Scholar
Cohen, L. (1996) Local Values in Quantum Mechanics. Physics Letters A 212 315319.CrossRefGoogle Scholar
Cohen, L. (2000) The Uncertainty principle for Windowed Wave Functions. Optics Communications 179 221229.CrossRefGoogle Scholar
Cohen, L. and Zaparovanny, Y. (1980) Positive Quantum Joint Distributions. Journal of Mathematical Physics 21 794796.CrossRefGoogle Scholar
Davidson, K. and Loughlin, P. (2000) Compensating for window effects in the calculation of spectrographic instantaneous bandwidth. IEEE Transactions on Biomedical Engineering 47 (4)556558.CrossRefGoogle ScholarPubMed
Entralgo, E. E., Kuryshkin, V. V. and Zaparovanny, Yu. I. (1988) Microphysical Reality and Quantum Formalism, Kluwer Academic Publishers.Google Scholar
Groutage, D. (1997) A fast algorithm for computing minimum cross-entropy positive time-frequency distributions. IEEE Transactions on Signal Processing 45 (8)19541970.CrossRefGoogle Scholar
Husimi, K. (1940) Some Formal Properties of the Density Matrix. Proceedings of the Physico-Mathematical Society of Japan 22 264314.Google Scholar
Janssen, A. J. E. M. (1984) Positivity properties of phase-plane distribution functions. Journal of Mathematical Physics 25 22402252.CrossRefGoogle Scholar
Janssen, A. J. E. M. (1985) Bilinear phase-plane distribution functions and positivity. Journal of Mathematical Physics 26 19861994.CrossRefGoogle Scholar
Jeong, J. and Williams, W. (1992) Kernel design for reduced interference distributions. IEEE Transactions on Signal Processing 40 (2)402412.CrossRefGoogle Scholar
Khinchin, A. (1937) A new derivation of a formula of P. Levy. Bulletin of the Moscow State University 1 15.Google Scholar
Kirkwood, J. G. (1933) Quantum statistics of almost classical ensembles. Physical Review 44 3137.CrossRefGoogle Scholar
Kuryshkin, V. V. (1973) Some problems of quantum mechanics possessing a non-negative phase-space distribution function. International Journal of Theoretical Physics 7 451466.CrossRefGoogle Scholar
Kuryshkin, V. V. and Zaparovanny, Yu. I. (1984) Comptes Rendus de l'Académie des Sciences 2 17.Google Scholar
Kuryshkin, V. V., Lybas, I. A. and Zaparovanny, Yu. (1980) Annales de la Fondation Louis de Broglie 5 105.Google Scholar
Lee, H. W. (1995) Theory and application of the quantum phase-space distribution-functions. Physics Reports 259 147211.CrossRefGoogle Scholar
Loughlin, P. (1992) Time-Frequency Energy Density Functions: Theory and Synthesis, Ph.D. dissertation, University of Washington.Google Scholar
Loughlin, P. (1997) Cohen–Posch (positive) time-frequency distributions: development and applications. Applied Signal Processing 4 122130.Google Scholar
Loughlin, P. and Davidson, K. (1998) Positive local variances of time-frequency distributions and local uncertainty. Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis 541–544.CrossRefGoogle Scholar
Loughlin, P., Pitton, J. and Atlas, L. (1993) Bilinear time-frequency representations: new insights and properties. IEEE Transactions on Signal Processing 41 (2)750767.CrossRefGoogle Scholar
Loughlin, P., Pitton, J. and Atlas, L. (1994) Construction of positive time-frequency distributions. IEEE Transactions on Signal Processing 42 (10)26972705.CrossRefGoogle Scholar
Mourgues, G., Feix, M. R., Andrieux, J. C. and Bertrand, P. (1985) Not necessary but sufficient conditions for the positivity of generalized Wigner functions. Journal of Mathematical Physics 26 25542555.CrossRefGoogle Scholar
Moyal, J. E. (1949) Quantum mechanics as a statistical theory. Proceedings of the Cambridge Philosophical Society 45 99124.CrossRefGoogle Scholar
Muga, J. G., Palao, J. P. and Sala, R. (1998) Average local values and local variances in quantum mechanics Physics Letters A 238 9094.CrossRefGoogle Scholar
Muga, J. G., Seidel, D. and Hegerfeldt, G. C. (2005) Quantum kinetic energy densities: an operational approach. Journal of Chemical Physics 122 (1)154106.CrossRefGoogle ScholarPubMed
Mugur-Schächter, M. (1979) A study of Wigner's theorem on joint probabilities. Foundations of Physics 9 389404.CrossRefGoogle Scholar
Mugur-Schächter, M. (1977) The Quantum Mechanical One-System Formalism, Joint Probabilities and Locality. In: Lopes, J. and Patty, M. (eds.) Quantum Mechanics, a Half Century Later, Springer-Verlag 107146.CrossRefGoogle Scholar
O'Connell, R. F. and Wigner, E. P. (1981) Quantum–mechanical distribution functions: Conditions for uniqueness. Physics Letters 83A 145148.CrossRefGoogle Scholar
Sala, R., Palao, J. P. and Muga, J. G. (1997) Phase space formalisms of quantum mechanics with singular kernel. Physics Letters A 231 304310.CrossRefGoogle Scholar
Scully, M. O. and Cohen, L. (1987) Quasi-Probability Distributions for Arbitrary Operators. In: Kim, Y. S. and Zachary, W. W. (eds.) The Physics of Phase Space. Springer-Verlag Lecture Notes in Physics 278 253260.CrossRefGoogle Scholar
Wigner, E. P. (1932) On the quantum correction for thermodynamic equilibrium. Physical Review, 40 749759.CrossRefGoogle Scholar
Wigner, E. P. (1971) Quantum–mechanical distribution functions revisited. In: Yourgrau, W. and van der Merwe, A. (eds.) Perspectives in Quantum Theory, MIT Press 2536.Google Scholar
Zhao, Y., Atlas, L. E. and Marks, R. J. (1990) The use of cone–shaped kernels for generalized time–frequency representations of nonstationary signals. IEEE Transactions on Acoustics, Speech and Signal Processing 38 10841091.CrossRefGoogle Scholar