Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T23:43:34.524Z Has data issue: false hasContentIssue false

Maxwell fields satisfying Huygens's principle

Published online by Cambridge University Press:  24 October 2008

H. P. Künzle
Affiliation:
Department of Mathematics, King's College, London

Abstract

It is shown that Huygens's principle holds for the solutions of Maxwell's equations for p-forms of all degrees in a gravitational plane wave space, while the solutions of the wave equation for 1, 2, and 3-forms, however, may have tails.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bruhat, Y.Ann. Mat. Pura. Appl. 64 (1964), 191228.CrossRefGoogle Scholar
(2)DeWitt, B. S. and Brehme, R. W.Ann. Physics 9 (1960), 220259.CrossRefGoogle Scholar
(3)Duff, G. F. D.Canad. J. Math. 5 (1953), 5780.CrossRefGoogle Scholar
(4)Ehlers, J. and Kundt, K. Article in Gravitation an introduction to current research, ed. by Witten, L. (Wiley; New York, 1962).Google Scholar
(5)Friedlander, F. G.The wave equation in a curved space-time (Cambridge University Press; to appear).CrossRefGoogle Scholar
(6)Goldberg, S. I.Curvature and homology (Academic Press; New York, 1962).Google Scholar
(7)Günther, P.Arch. Rational Mech. Anal. 18 (1965), 103106.CrossRefGoogle Scholar
(8)Günther, P.Wiss. Zeitschr. Karl Marx Univ., Math.-natw. Reihe, Leipzig 14 (1965), 497507.Google Scholar
(9)Lichnerowicz, A.Propagateurs et commutateurs en relativité générale (I.H.E.S.; Paris, 1961).CrossRefGoogle Scholar
(10)McLenaghan, R. G.An explicit determination of the empty space-times on which the wave equation satisfies Huygens's Principle (Proc. Cambridge Philos. Soc.; to appear).CrossRefGoogle Scholar
(11)Synge, J. L.Relativity: the general theory (North-Holland Publishing Company; Amsterdam, 1960).Google Scholar