Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T18:46:55.886Z Has data issue: false hasContentIssue false

On the quadratic invariant of binary sextics

Published online by Cambridge University Press:  28 July 2016

MACIEJ DUNAJSKI
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA. e-mail: [email protected]
ROGER PENROSE
Affiliation:
The Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG. e-mail: [email protected]

Abstract

We provide a geometric characterisation of binary sextics with vanishing quadratic invariant.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bryant, R. L. Metrics with exceptional holonomy. Ann. of Math. 126 (1987), 525576.Google Scholar
[2] Dolgachev, I. Lectures on Invariant Theory (Cambridge University Press, 2003).Google Scholar
[3] Doubrov, B. and Dunajski, M. Co–calibrated G 2 structure from cuspidal cubics. Ann. Global Anal. Geom. 42 (2012), 247265.Google Scholar
[4] Dunajski, M. and Godliński, M. GL(2, ℝ) structures, G 2 geometry and twistor theory. Quart. J. Math 63 (2012), 101132.Google Scholar
[5] Dunajski, M. and Sokolov, V. V. On 7th order ODE with submaximal symmetry. J. Geom. Phys. 61 (2011), 12581262.Google Scholar
[6] Eastwood, M. G. and Isaev, A. V. Extracting invariants of isolated hypersurface singularities from their moduli algebras. Math. Ann. 356 (2013), 7398.Google Scholar
[7] Elliott, E. B. An Introduction to the Algebra of Quantics (Oxford University Press, Clarendon Press, Oxford, 1895).Google Scholar
[8] Grace, J. H. and Young, A. The Algebra of Invariants (Cambridge University Press, Cambridge, 1903).Google Scholar
[9] Hitchin, N. Vector Bundles and the Icosahedron. Contemp. Math. 522 Amer. Math. Soc. (Providence, RI 2010), 7187.CrossRefGoogle Scholar
[10] Igusa, J. I. Arithmetic variety of moduli of genus two. Ann. of Math. 72 (1960), 612649.Google Scholar
[11] Kodaira, K. On stability of compact submanifolds of complex manifolds. Amer. J. Math. 85 (1963), 7994.Google Scholar
[12] Kung, J. P. S. and Rota, G. The invariant theory of binary forms. Bull. AMS 10 (1984), 2785.Google Scholar
[13] Mumford, D., Fogarty, J. and Kirwan, F. Geometric Invariant Theory (Springer-Verlag, 1994).CrossRefGoogle Scholar
[14] Olver, P. Classical Invariant Theory (Cambridge University Press, Cambridge, 1999).Google Scholar
[15] Penrose, R. Nonlinear gravitons and curved twistor theory. Gen. Rel. Grav. 7 (1976), 3152.Google Scholar
[16] Penrose, R. Orthogonality of general spin states. Twistor Newsletter 36 (1993).Google Scholar
[17] Penrose, R. and Rindler, W. Spinors and space-time. Two-spinor calculus and relativistic fields. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1987, 1988).Google Scholar
[18] Sylvester, J. J. On the calculus of forms, otherwise the theory of invariants. Cambridge and Dublin Mathematical Journal IX (1854), 85103.Google Scholar
[19] Sylvester, J. J. On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices. Amer. Journ. Math. I. (1878), 64125.Google Scholar
[20] Zimba, J. and Penrose, R. On Bell nonlocality without probabilities: more curious geometry. Stud. Hist. Philos. Sci. 24 (1993), 697720.Google Scholar