Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T05:45:39.644Z Has data issue: false hasContentIssue false

Efficient Processing of Fluorescence Images Using DirectionalMultiscale Representations

Published online by Cambridge University Press:  17 July 2014

D. Labate*
Affiliation:
Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
F. Laezza
Affiliation:
Dept. of Pharmacology and Toxicology, UT Medical Branch, Galveston, TX 77555, USA
P. Negi
Affiliation:
Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
B. Ozcan
Affiliation:
Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
M. Papadakis
Affiliation:
Dept. of Mathematics, University of Houston, Houston, Texas 77204, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Recent advances in high-resolution fluorescence microscopy have enabled the systematicstudy of morphological changes in large populations of cells induced by chemical andgenetic perturbations, facilitating the discovery of signaling pathways underlyingdiseases and the development of new pharmacological treatments. In these studies, though,due to the complexity of the data, quantification and analysis of morphological featuresare for the vast majority handled manually, slowing significantly data processing andlimiting often the information gained to a descriptive level. Thus, there is an urgentneed for developing highly efficient automated analysis and processing tools forfluorescent images. In this paper, we present the application of a method based on theshearlet representation for confocal image analysis of neurons. The shearletrepresentation is a newly emerged method designed to combine multiscale data analysis withsuperior directional sensitivity, making this approach particularly effective for therepresentation of objects defined over a wide range of scales and with highly anisotropicfeatures. Here, we apply the shearlet representation to problems of soma detection ofneurons in culture and extraction of geometrical features of neuronal processes in braintissue, and propose it as a new framework for large-scale fluorescent image analysis ofbiomedical data.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.. Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng., 57 (2010), no. 4, 841-852. CrossRefGoogle ScholarPubMed
Candès, E. J., Donoho, D. L.. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure and Appl. Math., 56 (2004), 216-266. Google Scholar
Chang, C. W., Mycek, M. A.. Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy. J Biophotonics, 5 (2012), 449-457. CrossRefGoogle Scholar
Delatour, B., Blanchard, V., Pradier, L., Duyckaerts, C.. Alzheimer pathology disorganizes cortico-cortical circuitry: direct evidence from a transgenic animal model. Neurobiol Dis., 16 (2004), no. 1, 41-47. CrossRefGoogle ScholarPubMed
Dima, A., Scholz, M., Obermayer, K.. Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform. IEEE Trans. Image Process., 11 (2002), no. 7, 790-801. CrossRefGoogle ScholarPubMed
Easley, G., Labate, D., Lim, W.. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal., 25 (2008), 25-46. CrossRefGoogle Scholar
Easley, G., Labate, D., Negi, P. S.. 3D data denoising using combined sparse dictionaries. Math. Model. Nat. Phen., 8 (2013), no. 1, 60-74. CrossRefGoogle Scholar
N.I. Fisher. Statistical analysis of circular data. Cambridge University Press, 1993.
Grigorescu, C., Petkov, N.. Distance sets for shape filters and shape recognition. IEEE Trans. on Image Processing, 12 (2003), no. 10, 1274-1286. CrossRefGoogle ScholarPubMed
Guo, K., Labate, D.. Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal., 39 (2007), 298-318. CrossRefGoogle Scholar
Guo, K., Labate, D.. Characterization and analysis of edges using the continuous shearlet transform. SIAM Journal on Imaging Sciences, 2 (2009), 959-986. CrossRefGoogle Scholar
Guo, K., Labate, D.. Analysis and detection of surface discontinuities using the 3D continuous shearlet transform. Appl. Comput. Harmon. Anal., 30 (2010), 231-242. CrossRefGoogle Scholar
Guo, K., Labate, D.. The construction of smooth Parseval frames of shearlets. Math. Model. Nat. Phen., 8 (2013), no. 1, 82-105. CrossRefGoogle Scholar
Guo, K., Labate, D., Lim, W.. Edge Analysis and identification using the continuous shearlet transform. Appl. Comput. Harmon. Anal., 27 (2009), 24-46. CrossRefGoogle Scholar
M. Holschneider. Wavelets. Analysis tool. Oxford University Press, Oxford, 1995.
Jacobs, B., Praag, H., Gage, F.. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol. Psychiatry, 5 (2000), no. 3, 262-269. CrossRefGoogle Scholar
T. F. James, J. Luisi, M. N. Nenov, N. Panova-Electronova, D. Labate, F. Laezza. The Nav1.2 channel is regulated by glycogen synthase kinase 3 (GSK3). To appear in Neuropharmacology (2014).
S. Kullback. Information theory and statistics. John Wiley and Sons, NY, 1959.
Kutyniok, G., Labate, D.. Resolution of the wavefront set using continuous shearlets. Trans. Amer. Math. Soc., 361 (2009), 2719-2754. CrossRefGoogle Scholar
G. Kutyniok, D. Labate. Shearlets: multiscale analysis for multivariate data. Birkhäuser, Boston (2012).
D. Labate, W. Lim, G. Kutyniok, G. Weiss. Sparse multidimensional representation using shearlets. Wavelets XI (San Diego, CA, 2005), 254-262, SPIE Proc. 5914, SPIE, Bellingham, WA, (2005).
Lamprecht, M.R., Sabatini, D.M., Carpenter, A.E.. CellProfiler: free, versatile software for automated biological image analysis. Biotechniques, 42 (2007), no. 1, 71-75. CrossRefGoogle ScholarPubMed
Langhammer, C. G., Previtera, P. M., Sweet, E. S., Sran, S. S., Chen, M., Firestein, B. L.. Automated Sholl analysis of digitized neuronal morphology at multiple scales: Whole cell Sholl analysis versus Sholl analysis of arbor subregions. Cytometry A, 77 (2010), no. 12, 1160-1168. CrossRefGoogle ScholarPubMed
F. Li, Z. Yin, G. Jin, H. Zhao, S.T. Wong. Bioimage informatics for systems pharmacology. PLoS Comput Biol. 9 (2013), no. 4, Chapter 17.
S. Mallat. A wavelet tour of signal processing. Academic Press, San Diego, CA, 1998.
Milosevic, N.T., Ristanovic, D., Stankovic, J.B.. Fractal analysis of the laminar organization of spinal cord neurons. Journal of Neuroscience Methods, 146 (2005), no. 2, 198-204. CrossRefGoogle ScholarPubMed
Murphy, R. F., Meijering, E., Danuser, G.. Special issue on molecular and cellular bioimaging. IEEE Trans. Image Process., 14 (2005), no. 9, 1233-1236. CrossRefGoogle Scholar
Ntziachristos, V.. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng., 8 (2006), 1-33. CrossRefGoogle Scholar
B. Ozcan, D. Labate, D. Jimenez, M. Papadakis. Directional and non-directional representations for the characterization of neuronal morphology. Wavelets XV (San Diego, CA, 2013), SPIE Proc. 8858 (2013).
Patel, V. M., Easley, G. R., Healy, D. M.. Shearlet-based deconvolution. IEEE Trans. Image Proc., 18 (2009), no. 12, 2673-2685. CrossRefGoogle ScholarPubMed
Portera-Cailliau, C., Weimer, R.M., De Paola, V., Caroni, P., Svoboda, K.. Diverse modes of axon elaboration in the developing neocortex. PLoS Biol., 3 (2005), no. 8, 1473-1487. CrossRefGoogle ScholarPubMed
Qi, X., Xing, F., Foran, D., Yang, L.. Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans Biomed Eng, 59 (2012), no. 3, 754-765. Google ScholarPubMed
Y. Rubner, C. Tomasi, L. J. Guibas. A metric for distributions with applications to image databases. Proceedings ICCV, (1998), 59-66.
Rubner, Y., Tomasi, C., Guibas, L. J.. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40 (2000), no. 2, 99-121. CrossRefGoogle Scholar
Schoenen, J.. The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience, 7 (1982), 2057-2087. CrossRefGoogle Scholar
Sholl, D. A.. Dendritic organization in the neurons of the visual and motor cortices of the cat. J. Anat., 87 (1953), 387-406. Google ScholarPubMed
Vallotton, P., Lagerstrom, R., Sun, C., Buckley, M., Wang, D.. Automated analysis of neurite branching in cultured cortical neurons using HCA-vision, Cytom. Part A, 71 (2007), no. 10, 889-895. CrossRefGoogle ScholarPubMed
Vonesch, C., Unser, M.. A fast thresholded Landweber algorithm for wavelet-regularized multidimensional deconvolution. IEEE Trans. Image Proc., 17 (2008), no. 4, 539-549. CrossRefGoogle ScholarPubMed
Vonesch, C., Unser, M.. A fast multilevel algorithm for wavelet-regularized image restoration. IEEE Trans. Image Proc., 18 (2009), no. 3, 509-523. CrossRefGoogle ScholarPubMed
Wählby, C., Sintorn, I. M., Erlandsson, F., Borgefors, G., Bengtsson, E.. Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc., 215 (2004), 67-76. CrossRefGoogle ScholarPubMed
G. Weiss, E. Wilson. The mathematical theory of wavelets. Proceeding of the NATO–ASI Meeting. Harmonic Analysis 2000. A Celebration. Kluwer Publisher, (2001).
Wen, Q., Stepanyants, A., Elston, G.N., Grosberg, A. Y., Chklovskiia, D. B.. Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. PNAS, 106 (2009), no. 30, 12536-12541. CrossRefGoogle Scholar
Yan, C., Li, A., Zhang, B., Ding, W., Luo, Q., Gong, H.. Automated and accurate detection of soma location and surface morphology in large-scale 3D neuron images. PLoS One, no. 8 (2013), 4. Google ScholarPubMed
Yi, S., Labate, D., Easley, G. R., Krim, H.. A shearlet approach to edge analysis and detection. IEEE Trans. Image Process., 18 (2009), no. 5, 929-941. Google Scholar