Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T16:09:29.258Z Has data issue: false hasContentIssue false

79.37 A generalisation of the Fermat-Torricelli point

Published online by Cambridge University Press:  01 August 2016

Michael D. de Villiers*
Affiliation:
Department of Mathematics Education, University of Durban-Westville, Private Bag X54001, Durban 4000, South Africa

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. de Villiers, M.D., Meetkunde, meting en intuisie, Pythagoras, 20 (July 1989) pp. 4445.Google Scholar
2. de Villiers, M.D., Meetkunde, verklaring en insig, Pythagoras 21 (November 1989) pp. 3338.Google Scholar
3. Pargeter, A.R., Note 3099, Math. Gaz. 47 (May 1964), pp. 218219.Google Scholar
4. Alliston, N., in Hoffer, W., Mathematical snack bar (1936) pp. 1314.Google Scholar