Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T01:14:31.413Z Has data issue: false hasContentIssue false

Transient self-focusing of an intense laser pulse in magnetized plasmas under non-paraxial approximation

Published online by Cambridge University Press:  01 May 2013

D.N. Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi, India
K. Avinash
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi, India
H. Suk
Affiliation:
Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
*
Address correspondence and reprint requests to: D.N. Gupta, Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India. E-mail: [email protected]

Abstract

Non-paraxial approximation based study of transient self-focusing of an intense short-pulse laser in plasma has been investigated by considering the effect of a transverse magnetic field. The laser with non-uniform distribution of intensity exerts a ponderomotive force on electrons and sets in an ambi-polar diffusion of the plasma. The ambient magnetic field, however, strongly inhibits the process, when the electron Larmor radius is comparable to or shorter than the laser spot size. As the plasma density is depleted, the laser beam becomes more self-focused. This study addresses a significant enhancement in the laser self-focusing rate by including the correction terms due the off-axis approximation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. San. Phys. Uspeckhi 10, 609636.Google Scholar
Bingham, R., Mendonca, J.T. & Shukla, P.K. (2004). Plasma based charged-particle accelerators. Plasma Phys. Contr. Fusion 46, R1R23.CrossRefGoogle Scholar
Borghesi, M., Mackinnon, A. J., Gaillard, R., Willi, O., Pukhov, A. & Meyer-Ter-Vehn, J. (1998). Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma. Phys. Rev. Lett. 80, 51375140.CrossRefGoogle Scholar
Chen, X.L. & Sudan, R.N. (1993). Necessary and sufficient conditions for self-focusing of short ultra-intense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 20822085.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Chessa, P., Mora, P. & Atonsen, T.M. Jr. (1998). Numerical simulation of short laser pulse relativistic self-focusing in underdense plasma. Phys. Plasmas 5, 34513458.CrossRefGoogle Scholar
Durfee Iii, C.G. & Milchberg, H.M. (1993). Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 24092412.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Esarey, E., Sprangle, P. & Krall, J. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quan. Electron. 33, 18791914.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fuerbach, A., Fernandez, A., Apolonski, A., Fuji, T. & Krausz, F. (2005). Chirped-pulse oscillators for the generation of high energy femtosecond laser pulses. Laser Part. Beams 23, 113116.CrossRefGoogle Scholar
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-Ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 47724775.CrossRefGoogle Scholar
Gibbon, P. (2005). Short Pulse Laser Interaction with Matter: An Introduction (Imperial London: College Press).CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2006). Combined role of frequency variation and magnetic field on laser electron acceleration. Phys. Plasmas 13, 013105.CrossRefGoogle Scholar
Gupta, D.N., Hur, M.S., Hwang, I., Suk, H. & Sharma, A.K. (2007). Plasma density ramp for relativistic self-focusing of an intense laser. J. Opt. Soc. Am. B 24, 11551159.CrossRefGoogle Scholar
Gupta, D.N., Hur, M.S. & Suk, H. (2007). Additional focusing of a high-intensity laser beam in a plasma with a density ramp and a magnetic field. Appl. Phys. Lett. 91, 081505.CrossRefGoogle Scholar
Gupta, D.N., Suk, H. & Hur, M.S. (2007). Realistic laser focusing effect on electron acceleration in the presence of a pulsed magnetic field. Appl. Phys. Lett. 91, 211101.CrossRefGoogle Scholar
Hauser, T., Scheid, W. & Hora, H. (1988). Analytical calculation of relativistic self focusing. Opt. Soc. Am. B 5, 20292034.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Rosmej, O.N., Spiller, P., Tahir, N.A., Weyrich, K., Dafni, T., Kuster, M., Ni, P., Roth, M., Udrea, S. & Varentsov, D. (2007). Particle accelerator physics and technology for high energy density physics research. Eur. Phys. J: D 44, 293300.Google Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Johnson, L.C. & Chu, T.K. (1974). Measurements of electron density evolution and beam self-focusing in a laser-produced plasma. Phys. Rev. Lett. 32, 517520.CrossRefGoogle Scholar
Leemans, W.B., Volfbeyn, P., Guo, K.Z., Chattopadhyay, S., Schroeder, C.B., Shadwick, B.A., Lee, P.B. & Wurtele, J.S. (1998). Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered particle injection. Phys. Plasmas 5, 16151623.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2001). Relativistic laser guiding in an azimuthal magnetic field in a plasma. Phys. Plasmas 8, 285288.CrossRefGoogle Scholar
Liu, H., He, X.T. & Hora, H. (2006). Additional acceleration and collimation of relativistic electron beams by magnetic field resonance at very high intensity laser interaction. Appl. Phys. B 82, 9397.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nat. 377, 606608.CrossRefGoogle Scholar
Pukhov, A. & Meyer-Ter-Vehn, J. (1996). Relativistic magnetic self-off channeling on of light in the near-critical plasma: three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.CrossRefGoogle Scholar
Ren, C., Duda, B.J., Hemker, R.G., Mori, W.B., Katsouleas, T., Antonsen, T.M. Jr. & Mora, P. (2001). Compressing and focusing a short laser pulse by a thin plasma lens. Phys. Rev. E 63, 026411.CrossRefGoogle Scholar
Sandhu, A.S., Kumar, G.R., Sengupta, S., Das, A. & Kaw, P.K. (2005). Laser-pulse-induced second-harmonic and hard X-ray emission: role of plasma-wave breaking. Phys. Rev. Lett. 95, 025005.CrossRefGoogle ScholarPubMed
Shukla, P.K., Rao, N.N., Yu, M.Y. & Tsintsadze, N.L. (1986). Relativistic nonlinear effects in plasmas. Phys. Rep. 138, 1149.CrossRefGoogle Scholar
Shukla, P.K. (1999). Generation of wakefields by elliptically polarized laser pulses in a magnetized plasma. Phys. Plasmas 6, 13631365.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics XIII. Amsterdam: North-Holland, Amsterdam, p. 169.Google Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526532.CrossRefGoogle Scholar
Suk, H., Barov, N., Rosenzweig, J.B. & Esarey, E. (2001). Plasma Electron Trapping and Acceleration in a Plasma Wake Field Using a Density Transition. Phys. Rev. Lett. 86, 10111014.CrossRefGoogle Scholar
Tsakiris, G.D., Gahn, C. & Tripathi, V.K. (2000). Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma. Phys. Plasmas 7, 30173030.CrossRefGoogle Scholar
Wagner, U., Tatarakis, M., Gopal, A., Beg, F.N., Clark, E.L., Dangor, A.E., Evans, R.G., Haines, M.G., Mangles, S.P.D., Norreys, P.A., Wei, M.S., Zepf, M. & Krushelnick, K. (2004). Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70, 026401.CrossRefGoogle ScholarPubMed
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.CrossRefGoogle Scholar