Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T02:01:11.988Z Has data issue: false hasContentIssue false

Relativistic shock waves induced by ultra-high laser pressure

Published online by Cambridge University Press:  24 February 2014

Shalom Eliezer*
Affiliation:
Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid, Spain Soreq Research Center, Yavne, Israel
Noaz Nissim
Affiliation:
Soreq Research Center, Yavne, Israel
Erez Raicher
Affiliation:
Soreq Research Center, Yavne, Israel Hebrew University of Jerusalem, Jerusalem, Israel
José Maria Martínez-Val
Affiliation:
Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid, Spain
*
Address correspondence and reprint requests to: Shalom Eliezer, Soreq Research Center, Yavne, Israel. E-mail: [email protected]

Abstract

This paper analyzes the one dimensional shock wave created in a planar target by the ponderomotive force induced by very high laser irradiance. The laser-induced relativistic shock wave parameters, such as compression, pressure, shock wave and particle flow velocities, sound velocity and temperature are calculated here for the first time in the context of relativistic hydrodynamics. For solid targets and laser irradiance of about 2 × 1024 W/cm2, the shock wave velocity is larger than 50% of the speed of light, the shock wave compression is larger than 4 (usually of the order of 10) and the targets have a pressure of the order of 1015 atmospheres. The estimated temperature can be larger than 1 MeV in energy units and therefore very excited physics (like electron positron formation) is expected in the shocked area. Although the next generation of lasers might allow obtaining relativistic shock waves in the laboratory this possibility is suggested in this paper for the first time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basov, N.G., Guskov, S.Y. & Feoktistov, L.P. (1992). Thermonuclear gain of ICF targets with direct heating of the ignitor. J. Soviet Laser Res. 13, 396399.CrossRefGoogle Scholar
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Sokolov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001/14.CrossRefGoogle ScholarPubMed
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 2102–2015.CrossRefGoogle ScholarPubMed
Eliezer, S. & Hora, H. (1989). Double layers in laser produced plasmas. Phys. Rept 172, 339410.CrossRefGoogle Scholar
Eliezer, S. & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175181.CrossRefGoogle Scholar
Eliezer, S. & Pinhasi, S.V. (2013). Laser induced fast ignition made realistic by relativistic velocities-dream or reality? http://dx.doi.org/10.1016/j.pnucene.2013.09.001.CrossRefGoogle Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Boca Raton: CRC press.CrossRefGoogle Scholar
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 30, 225232.CrossRefGoogle Scholar
Eliezer, S. (2013). Shock waves and Equations of state related to laser plasma interaction. Laser-Plasma Interactions and Applications, 68th Scottish Universities Summer School in Physics (McKenna, P., Neely, D., Bingham, R. & Jaroszynski, D.A., Eds.), pp. 4978. Heidelberg: Springer Publication.Google Scholar
Eliezer, S. & Ricci, R.A., eds. (1991). High Pressure Equation of State: Theory and Application. Enrico Fermi School CXIII 1989. Amsterdam: North Holland.Google Scholar
Eliezer, S., Ghatak, A., Hora, H. & Teller, E. (2002). Fundamental of Equation of State. Singapore: World Scientific.CrossRefGoogle Scholar
Eliezer, S., Henis, Z., Martinez Val, J.M. & Vorobeichik, I. (2000). Effects of different nuclear reactions on internal tritium breeding in deuterium fusion. Nucl. Fusion 40, 195207.CrossRefGoogle Scholar
Eliezer, S., Martinez Val, J.M. & Pinhasi, S.V. (2013). Relativistic shock waves in the laboratory. Laser Part. Beams 31, 113122.CrossRefGoogle Scholar
Eliezer, S., Nissim, N., Martinez Val, J.M., Mima, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, ???.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic ion generation in the laser piston regime. Phys. Rev. Lett. 92, 175003/14.CrossRefGoogle ScholarPubMed
Fortov, V.E. & Lomonosov, I.V. (2010). Shock waves and equations of state of matter. Shock Waves 20, 5371.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser & Part.Beams 23, 4754.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers produced by nonlinear forces in laser produced plasmas. Phys. Rev Lett. 53, 16501653.Google Scholar
Hora, H. (1991). Plasmas of High Temperatures and Density. Heidelberg: Springer.Google Scholar
Jackel, S., Salzmann, D., Krumbein, A. & Eliezer, S. (1983). Multishock compression of solid planar targets using tailored laser pulses. Phys. Fluids 26, 31383147.CrossRefGoogle Scholar
Lalousis, P., Foldes, I.B. & Hora, H. (2012). Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams 30, 233242.CrossRefGoogle Scholar
Lalousis, P., Hora, H., Eliezer, S., Martinez Val, J.M., Moustaizis, S., Miley, G.H. & Mourou, G. (2013). Shock Mechanisms by ultrahigh laser accelerated plasma blocks in solid density targets for fusion. Phys. Lett. A 377, 885888.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics. Oxford: Pergamon Press.Google Scholar
McQueen, R.G. (1991). Shock waves in condensed media: their properties and the equation of state of materials derived from them. In High Pressure Equation of State: Theory and Application. Enrico Fermi School CXIII 1989 (Eliezer, S. & Ricci, R.A., Eds.), pp. 101216. Amsterdam: North Holland.Google Scholar
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002/14.CrossRefGoogle Scholar
Piazza, A.D., Muller, C., Hatsagortsyan, K.Z. & Keitel, C.H. (2012). Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Modern Phys. 84, 11771228.CrossRefGoogle Scholar
Russo, G. (1988). Stability properties of relativistic shock waves: Applications. Astrophys. J. 334, 707721.Google Scholar
Taub, A.H. (1948). Relativistic Rankine-Hugoniot Equations. Phys. Rev. 74, 328334.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra-powerful lasers, Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Vogler, Z. & Temple, B. (2012). Simulation of general relativistic shock wave interactions by a locally inertial Godunov method featuring dynamical time dilation. doi:10.1098/rspa.2011.0355.CrossRefGoogle Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press Publications.Google Scholar