Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T02:11:27.652Z Has data issue: false hasContentIssue false

Heavy-ion radiography facility at the Institute of Modern Physics

Published online by Cambridge University Press:  16 October 2014

Lina Sheng
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Yongtao Zhao*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Guojun Yang
Affiliation:
Institute of Fluid Physics, Chinese Academy of Engineering Physics, Sichan, China
Tao Wei
Affiliation:
Institute of Fluid Physics, Chinese Academy of Engineering Physics, Sichan, China
Xiaoguo Jiang
Affiliation:
Institute of Fluid Physics, Chinese Academy of Engineering Physics, Sichan, China
Xianming Zhou
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Rui Cheng
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Yan Yan
Affiliation:
Lanzhou University, Gansu, China
Peng Li
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Jiancheng Yang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Youjin Yuan
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Jiawen Xia
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
Guoqing Xiao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Gansu, China
*
Address correspondence and reprint requests to: Yongtao Zhao, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China. E-mail: [email protected]

Abstract

In order to identify the density and material type, high energy protons, electrons, and heavy ions are used to radiograph dense objects. The particles pass through the object, undergo multiple coulomb scattering, and are focused onto an image plane by a magnetic lens system. A modified beam line at the Institute of Modern Physics of the Chinese Academy of Sciences has been developed for heavy-ion radiography. It can radiograph a static object with a spatial resolution of about 65 µm (1 σ). This paper presents the heavy-ion radiography facility at the Institute of Modern Physics, including the beam optics, the simulation of radiography by Monte Carlo code and the experimental result with 600 MeV/u carbon ions. In addition, dedicated beam lines for proton radiography which are planned are also introduced.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amann, J.F., Espinoza, C.J., Gomez, J.J., Hart, G.W., Hogan, G.E., Marek, L.J., McClelland, J.B., Morris, C.L., Ziock, H.J., Zumbro, J.D., Atencio, L.G., Hill, R.E., Jaramillo, S.A., King, N.S.P., Morley, K.B., Pazuchanics, P., Yates, G.J., Mottershead, C.T., Mueller, K.H., Sarracino, J.S., Saunders, A, Hartouni, E.P., Prigl, R., Scaduto, J & Schwaner, E. (1997). High-energy test of proton radiography concepts. INIS 29(1).Google Scholar
Antipov, Yu.M., Afonin, A.G., Vasilevskii, A.V., Gusev, I.A., Demyanchuk, V.I., Zyat'kov, O.V., Ignashin, N.A., Karshev, Yu.G., Larionov, A.V., Maksimov, A.V., Matyushin, A.A., Minchenko, A.V., Mikheev, M.S., Mirgorodskii, V.A., Peleshko, V.N., Rud'ko, V.D., Terekhov, V.I., Tyurin, N.E., Fedotov, Yu.S., Trutnev, Yu.A., Burtsev, V.V., Volkov, A.A., Ivanin, I.A., Kartanov, S.A., Kuropatkin, Yu.P., Mikhailov, A.L., Mikhailyukov, K.L., Oreshkov, O.V., Rudnev, A.V., Spirov, G.M., Syrunin, M.A., Tatsenko, M.V., Tkachenko, I.A. & Khramov, I.V. (2010). A radiographic facility for the 70-GeV proton accelerator of the Institute for High Energy Physics. Nucl. Exper. Techn. 53, 319326.Google Scholar
Garnett, R.W., Merrill, F.E., O'Hara, J.F., Rees, D.E., Rybarcyk, L.J., Tajima, T. & Walstrom, P.L. (2012). A conceptual 3-GeV LANSCE Linac upgrade for enhanced proton radiography. INIS 43(35).Google Scholar
Gavron, A., Morris, C.L., Ziock, H.J. & Zumbro, J.D. (1996). Proton radiography. LA-UR-96-420.Google Scholar
Golubev, A.A., Demidov, V.S., Demidova, E.V., Dudin, S.V., Kantsyrev, A.V., Kolesnikov, S.A., Mintsev, V.B., Smirnov, G.N., Turtikov, V.I., Utkin, A.V., Fortov, V.E. & Sharkov, B.Yu. (2010). Diagnostics of fast processes by charged particle beams at TWAC-ITEP accelerator-accumulator facility Techn. Phys. Lett. 36, 177180.CrossRefGoogle Scholar
Hoffmann, D., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams, Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Merrill, F.E., Golubev, A.A., Mariam, F.G., Turtikov, V.I., Varentsov, D. & HEDgeHOB Collaboration. (2009). Proton Microscopy at FAIR. AIP Conf. Proc. 1195, 667–670.CrossRefGoogle Scholar
Merrill, F.E., Campos, E., Espinoza, C., Hogan, G., Hollander, B., Lopez, J., Mariam, F.G., Morley, D., Morris, C.L., Murray, M., Saunders, A., Schwartz, C. & Thompson, T.N. (2011). Magnifying lens for 800 MeV proton radiography. Rev. Sci. Instr. 82, 103709.CrossRefGoogle ScholarPubMed
Morris, C., Hopson, J.W. & Goldstone, P. (2006). Proton radiography. Los Alamos Science 30, 3245.Google Scholar
Morris, C.L., Ables, E., Alrick, K.R., Aufderheide, M.B., Barnes, P.D. Jr., Buescher, K.L., Cagliostro, D.J., Clark, D.A., Clark, D.J., Espinoza, C.J., Ferm, E.N., Gallegos, R.A., Gardner, S.D., Gomez, J.J., Greene, G.A., Hanson, A., Hartouni, E.P., Hogan, G.E., King, N.S.P., Kwiatkowski, K., Liljestrand, R.P., Mariam, F.G., Merrill, F.E., Morgan, D.V., Morley, K.B., Mottershead, C.T., Murray, M.M., Pazuchanics, P.D., Pearson, J.E., Sarracino, J.S., Saunders, A., Scaduto, J., Schach von Wittenau, A.E., Soltz, R.A., Sterbenz, S., Thompson, R.T., Vixie, K., Wilke, M.D., Wright, D.M. & Zumbro, J.D. (2011). Flash radiography with 24 GeV/c protons. J. Appl. Phys. 109, 104905.CrossRefGoogle Scholar
Mottershead, C.T. & Zumbro, J.D. (1998). Magnetic optics for proton radiography. IEEE 13971399.Google Scholar
Ryu, H., Song, E., Lee, J. & Kim, J. (2008). Density and spatial resolutions of proton radiography using a range modulation technique. Phys. Med. Biol. 53, 54615468.CrossRefGoogle ScholarPubMed
Schwartz, C.L., Hogan, G.E., Kwiatkowski, K., Rigg, P.A., Rightley, P.M., Mariam, F.G., MarrLyon, M., Merrill, F.E., Morris, C.L., Saunders, A. & Tupa, D. (2007). New capabilities of 800 MeV proton radiography at Los Alamos. AIP Conf. Proc. 955, 11351138.Google Scholar
Tahir, N.A., Shutov, A., Varentsov, D., Hoffmann, D., Spiller, P., Lomonosov, I., Wieser, J., Jacoby, J. & Fortov, V.E. (2002). High-energy-density matter research at GSI Darmstadt using intense heavy ion beams. Laser Part. Beams 20, 393397.CrossRefGoogle Scholar
Wei, T., Yang, G.J., He, X.Z, Long, J.D., Zhang, Z., Wang, S.H., Yang, Z., Li, W.F., Li, H, Yang, X.L., Wang, M.H., Shi, J.S., Zhang, K.Z., Deng, J.J. & Zhang, L.W. (2010). A lattice scenario for a proton radiography accelerator. CPC (HEP & NP) 34, 17541756.Google Scholar
Yang, G.J., Zhang, Z., Wei, T., He, X.Z, Long, J.D., Shi, J.S. & Zhang, K.Z. (2012). A design study of a magnifying magnetic lens for proton radiography. CPC (HEP & NP) 36, 247250.Google Scholar
Zhang, Z., Yang, G.J. & Lv, J.Q. (2010). Lie algebraic analysis and simulation of high-current pulsed beam transport in a solenoidal lens. CPC (HEP & NP) 34, 134137.Google Scholar
Zhao, Y.T., Hu, Z.H., Cheng, R., Wang, Y.Y., Peng, H.B., Golubev, A.A., Zhang, X.A., Lu, X., Zhang, D.C., Zhou, X.M., Wang, X., Xu, G., Ren, J.R., Li, Y.F., Lei, Y., Sun, Y.B., Zhao, J.T., Wang, T.S., Wang, Y.N. & Xiao, G.Q. (2012). Trends in heavy ion interaction with plasma. Laser Part. Beams 30, 679706.CrossRefGoogle Scholar
Zhao, Y.T. (2011). Plans for Proton/Ion Radiography at IMP. http://www-aix.gsi.de/conferences/HEPM2009/talks/HEPM-2009-Zhao.pdf.Google Scholar
Ziock, H.J., Adams, K.J., Alrick, K.R., Amann, J.F., Boissevain, J.G., Crow, M.L., Cushing, S.B., Eddleman, J.C., Espinoza, C. J., Fife, T.T., Gallegos, R.A., Gomez, J., Gorman, T.J., Gray, N.T., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., King, N.S.P., Knudson, J.N., London, R.K., Lopez, R.P., McClelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Mottershead, C.T., Mueller, K.L. Jr., Neri, F.A., Numkena, D.M., Pazuchanics, P.D., Pillai, C., Prael, R.E., Riedel, C.M., Sarracino, J.S., Stacy, H.L., Takala, B.E., Thiessen, H.A., Tucker, H.E., Walstrom, P.L., Yates, G.J., Zumbro, J.D., Ables, E., Aufderheide, M.B., Barnes, P.D. Jr., Bionta, R.M., Fujino, D.H., Hartouni, E.P., Park, H.-S., Soltz, R., Wright, D.M., Balzer, S., Flores, P.A., Thompson, R.T., Prigl, R., Scaduto, J., Schwaner, E.T., Saunders, A. & O'Donnell, J.M. (1998). The proton radiography concept. LA-UR-98-1368.Google Scholar