Published online by Cambridge University Press: 16 October 2009
Time and space-resolved emission spectroscopy measurements were performed to investigate plasma dynamics during laser evaporation of a graphite target in an ambient inert atmosphere. Intense molecular emission is found to occur behind a front separating the plasma from the foreign gas. Two stages of expansion are found and are well described, using a viscous drag force model for the first one and a delayed ideal blast wave model for the second. The vibrational temperature estimated using the Swan band in helium at different pressures is presented.