Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T23:16:48.588Z Has data issue: false hasContentIssue false

Spectroscopic studies of laser ablated ZnO plasma and correlation with pulsed laser deposited ZnO thin film properties

Published online by Cambridge University Press:  14 April 2010

Gaurav Shukla
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India
Alika Khare*
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India
*
Address correspondence and reprint requests to: Alika Khare, Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, India. E-mail: [email protected]

Abstract

In this paper, measurement of various plasma parameters during pulsed laser deposition of ZnO thin films on Si (100) substrates is reported. The variations of electron number density and electron temperature with ambient pressure and target substrate distance is obtained via spectroscopic measurements. The structural and optical properties of ZnO thin films were analyzed using X-ray diffraction, scanning electron microscope, and photoluminescence and then correlated with spectroscopic results to find optimum conditions for the deposition of high quality ZnO thin films.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alver, U., Kılınç, T., Bacaksız, E., Küçükömeroğlu, T., Nezir, S., Mutlu, İ.H. & Aslan, F. (2007). Synthesis and characterization of spray pyrolysis zinc oxide microrods. Thin Solid Films 515, 34483451.Google Scholar
Arnold, N., Gruber, J. & Heitz, J. (1999). Spherical expansion of the vapor plume into ambient gas: an analytical model. Appl. Phys. A 69, S87S93.Google Scholar
Beilis, I.I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 5363.Google Scholar
Bekefi, G. (1976). Principles of Laser Plasmas. New York, NY: Wiley.Google Scholar
Chen, Y., Bagnall, D. & Yao, T. (2000). ZnO as a novel photonic material for the UV region. Mater. Sci. Eng. B 75,190198.CrossRefGoogle Scholar
Claeyssens, F., Cheesman, A., Henley, S.J. & Ashfold, M.N.R. (2002). Studies of the plume accompanying pulsed ultraviolet laser ablation of zinc oxide. J. App. Phys. 92, 68866894.CrossRefGoogle Scholar
Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfold, M.N.R. & Harding, J.H. (2005). Growth of ZnO thin films: Experiment and theory. J. Mater. Chem. 15, 139148.CrossRefGoogle Scholar
Fazio, E., Neri, F., Ossi, P.M., Santo, N. & Trusso, S. (2009). Ag nanocluster synthesis by laser ablation in Ar atmosphere: a plume dynamics analysis. Laser Part. Beams 27, 281290.CrossRefGoogle Scholar
Godwal, Y., Taschuk, M.T., Lui, S.L., Tsui, Y.Y. & Fedosejevs, R. (2008). Development of laser-induced breakdown spectroscopy for microanalysis applications. Laser Part. Beams 26, 95103.CrossRefGoogle Scholar
Gonzalez-Valls, I. & Lira-Cantu, M. (2009). Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2, 1934.CrossRefGoogle Scholar
Griem, H.R. (1964). Plasma Spectroscopy. New York, NY: McGraw-Hill.Google Scholar
Hafeez, S., Shaikh, N.M. & Baig, M.A. (2008). Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd : YAG laser. Laser Part. Beams 26, 4150.Google Scholar
Hansen, T.N. & Schou, J. (1998). Angle-resolved energy distributions of laser ablated silver ions in vacuum. Appl. Phys. Lett. 72, 18291831.Google Scholar
Hansen, T.N., Schou, J. & Lunney, J.G. (1997). Angular distributions of silver ions and neutrals emitted in vacuum by laser ablation. Europhys. Lett. 40, 441446.CrossRefGoogle Scholar
Harilal, S.S., O'Shay, B., Tao, Y. & Tillack, M.S. (2006). Ambient gas effects on the dynamics of laser-produced tin plume expansion. J. Appl. Phys. 99, 083303083310.Google Scholar
Hoffman, R.L., Norris, B.J. & Wager, J.F. (2003). ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733735.CrossRefGoogle Scholar
Ive, T., Ben-Yaacov, T., Murai, A., Asamizu, H., Van de Walle, C.G., Mishra, U., Den Baars, S.P. & Speck, J.S. (2007). Metalorganic chemical vapor deposition of ZnO(0001) thin films on GaN(0001) templates and ZnO(0001) substrates. phys. Status Solidi 5, 30913094.CrossRefGoogle Scholar
Kasperczuk, , Pisarczyk, T., Borodziuk, S., Ullischmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2007). Interferometric investigations of influence of target irradiation on the parameters of laser produced plasma jets. Laser Part. Beams 25, 425433.CrossRefGoogle Scholar
Kawakami, M., Hartanto, A.B., Nakata, Y. & Okada, T. (2003). Synthesis of ZnO Nanorods by Nanoparticle Assisted Pulsed-Laser Deposition. Jpn. J. Appl. Phys. 42, L33L35.Google Scholar
Lebo, I.G., Lebo, A.I., Batani, D., Dezulian, R., Benocci, R., Jafer, R. & Krousky, E. (2008). Simulations of shock generation and propagation in laser-plasmas. Laser Part. Beams 26, 179188.Google Scholar
Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H. & Lee, H.J. (2002). Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 36483650.Google Scholar
Look, D.C., Claflin, B., Alivov, Ya.I. & Park, S.J. (2004). The future of ZnO light emitters. Phys. Status Solidi 201, 22032212.CrossRefGoogle Scholar
Namba, S., Nozu, R., Takiyama, K. & Oda, T. (2006). Spectroscopic study of ablation and recombination processes in a laser-produced ZnO plasma. J. Appl. Phys. 99, 073302073310.Google Scholar
Norton, D.P., Heo, Y.W., Ivill, M.P., Ip, K., Pearton, S.J., Chisholm, M.F. & Steiner, T. (2004). ZnO: growth, doping & processing. Mater. Today 7, 3440.Google Scholar
Ogata, K., Koike, K., Sasa, S., Inoue, M. & Yano, M. (2009). Fabrication of ZnO nanorods on O-polar ZnO layers grown by molecular beam epitaxy and electrical characterization using conductive atomic force microscopy. Semicond. Sci. Technol. 24, 015006015009.CrossRefGoogle Scholar
Ohshima, T., Thareja, R.K., Yamagata, Y., Ikegami, T. & Ebihara, K. (2001). The emission spectra and ICCD images of laser ablation plasma for ZnO thin film preparation. Proc. 15th International Symposium on Plasma Chemistry, 16251630.Google Scholar
Ohtomo, A. & Tsukazaki, A. (2005). Pulsed laser deposition of thin films and super lattices based on ZnO. Semicond. Sci. Technol. 20, S1S12.Google Scholar
Ozaki, T., Bom, L.E. & Ganeev, R.A. (2008). Extending the capabilities of ablation harmonies to shorter wavelengths and higher intensity. Laser Part. Beams 26, 235240.CrossRefGoogle Scholar
Ozerov, I., Bulgakov, A.V., Nelson, D.K., Castell, R. & Marine, W. (2005). Production of gas phase zinc oxide nanoclusters by pulsed laser ablation. Appl. Surf. Sci. 247, 17.Google Scholar
Özgür, Ü., Alivov, Ya.I., Liu, C., Teke, A., Reshchikov, M.A., Doğan, S.Avrutin, V., Cho, S.-J. & Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 0413010413103.Google Scholar
Özgür, Ü., Teke, A., Liu, C., Cho, S.-J., Morkoç, H. & Everitt, H.O. (2004). Stimulated emission and time-resolved photoluminescence in rf-sputtered ZnO thin films. Appl. Phys. Lett. 84, 32233225.CrossRefGoogle Scholar
Shukla, G. & Khare, A. (2009). Optical emission spectroscopic studies on laser ablated TiO2 plasma. App. Surf. Sci. 255, 87308737.Google Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.Google Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O2/Ar atmosphere. Laser Part. Beams 23, 149153.Google Scholar
Xu, H., Liu, X., Cui, D., Li, M. & Jiang, M. (2006). A novel method for improving the performance of ZnO gas sensors. Sensors Actuators B 114, 301307.Google Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. New York, NY: Academic Press.Google Scholar
Ying, M., Xia, Y., Sun, Y., Zhao, M., Ma, Y., Liu, X., Li, Y. & Hou, X. (2003). Plasma properties of a laser-ablated aluminum target in air. Laser Part. Beams 21, 97101.Google Scholar
Yu, Z.G., Gong, H. & Wu, P. (2005). Dopant sources choice for formation of p-type zno: phosphorus compound sources. Chem. Mater. 17, 852855.Google Scholar
Yuen, C., Yu, S.F., Leong, E.S.P., Lau, S.P., Pita, K., Yang, H.Y. & Chen, T.P. (2007). Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique. J. Appl. Phys. 101, 094905094907.Google Scholar